MHB How do we find the sum of the roots in a quadratic equation?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Roots Sum
AI Thread Summary
The sum of the roots of the quadratic equation x^2 + px + q = 0 is shown to be -p. This is derived from the quadratic formula, where the sum of the roots S is calculated as -b/a. By substituting b with p and a with 1, the result simplifies to -p. The discussion confirms the relationship between the coefficients and the roots of the quadratic equation. Understanding this concept is essential for solving quadratic equations effectively.
mathdad
Messages
1,280
Reaction score
0
Show that the sum of the roots of the equation

x^2 + px + q = 0 is -p.

I need help with the set up.

Is the discriminant involved here?
 
Mathematics news on Phys.org
What do you get when you expand (x - a)(x - b)?
 
greg1313 said:
What do you get when you expand (x - a)(x - b)?

(x - a)(x - b)

x^2 - bx - ax + ab

After factoring by grouping, I found the roots to be x = a and x = b.

What is next?
 
Here's another approach:

Suppose we have:

$$ax^2+bx+c=0$$

Them by the quadratic formula, we have that the sum $S$ of the roots is given by:

$$S=\frac{-b+\sqrt{b^2-4ac}}{2a}+\frac{-b-\sqrt{b^2-4ac}}{2a}=-\frac{b}{a}$$

Use this formula on the given quadratic...what do you find?
 
MarkFL said:
Here's another approach:

Suppose we have:

$$ax^2+bx+c=0$$

Them by the quadratic formula, we have that the sum $S$ of the roots is given by:

$$S=\frac{-b+\sqrt{b^2-4ac}}{2a}+\frac{-b-\sqrt{b^2-4ac}}{2a}=-\frac{b}{a}$$

Use this formula on the given quadratic...what do you find?

Great job!

Ok. You said use -b/a.

Let b = p

Let a = 1

We get -p/1 = -p.

I got it!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top