Petar Mali
- 283
- 0
If I have cubic structure where plane is define by vector \rho and in z direction I have planes ...m-2,m-1,m,m+1,m+2...
and if I have for example
\sum_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}\hat{B}_{m+1,\vec{\rho}}
how to go with that in K-space?
If I had\sum_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}
I will say
(m,\vec{\rho})=\vec{n}
and then I will have\sum_{\vec{n}}\hat{B}_{\vec{n}}\hat{B}_{\vec{n}}=\sum_{\vec{n}}\frac{1}{\sqrt{N}}\sum_{\vec{k}}\hat{B}_{\vec{k}}e^{i\vec{k}\cdot\vec{n}}\frac{1}{\sqrt{N}}\sum_{\vec{q}}\hat{B}_{\vec{q}}e^{i\vec{q}\cdot\vec{n}}
=\frac{1}{N}\sum_{\vec{k},\vec{q}}\hat{B}_{\vec{k}}\hat{B}_{\vec{q}}N\delta_{\vec{k},-\vec{q}}=\sum_{\vec{k}}\hat{B}_{\vec{k}}\hat{B}_{-\vec{k}}
But what to do in case with m+1. Thanks for your answer!
and if I have for example
\sum_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}\hat{B}_{m+1,\vec{\rho}}
how to go with that in K-space?
If I had\sum_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}\hat{B}_{m,\vec{\rho}}
I will say
(m,\vec{\rho})=\vec{n}
and then I will have\sum_{\vec{n}}\hat{B}_{\vec{n}}\hat{B}_{\vec{n}}=\sum_{\vec{n}}\frac{1}{\sqrt{N}}\sum_{\vec{k}}\hat{B}_{\vec{k}}e^{i\vec{k}\cdot\vec{n}}\frac{1}{\sqrt{N}}\sum_{\vec{q}}\hat{B}_{\vec{q}}e^{i\vec{q}\cdot\vec{n}}
=\frac{1}{N}\sum_{\vec{k},\vec{q}}\hat{B}_{\vec{k}}\hat{B}_{\vec{q}}N\delta_{\vec{k},-\vec{q}}=\sum_{\vec{k}}\hat{B}_{\vec{k}}\hat{B}_{-\vec{k}}
But what to do in case with m+1. Thanks for your answer!
Last edited: