A How Do You Construct the Chain Rule for Green's Function in Half-Space?

Shackleford
Messages
1,649
Reaction score
2
This is from Evans page 37. I seem to be missing a basic but perhaps subtle point.

Definition. Green's function for the half-space ##\mathbb{R}^n_+,## is
\begin{gather*}
G(x,y) = \Phi(y-x) - \Phi(y-\tilde{x}) \qquad x,y \in \mathbb{R}^n_+, \quad x \neq y.
\end{gather*}
What's the proper way to construct the chain rule here for ##\partial y_n## given that ##\Phi## is a function of ##y-x##? Instead ##(y-x)_n##? I think I setup my ##u## substitution correctly, but I'm unclear on ##\frac{\partial u}{\partial y_n}##.

I seem to be missing a subtle point here.
\begin{gather*}
\begin{split}
\Phi(y-x) & = \frac{1}{n(n-2)\alpha (n)} \cdot \frac{1}{|y-x|^{n-2}} = \frac{1}{n(n-2)\alpha (n)} \cdot |y-x|^{-(n-2)}, \\
x & =(x_1,...,x_{n-1},x_n) \qquad \tilde{x}=(x_1,...,x_{n-1},-x_n), \\
y-x & = (y_1-x_1,...,y_{n-1}-x_{n-1},y_n-x_n), \\
y-\tilde{x} & =(y_1-x_1,...,y_{n-1}-x_{n-1},y_n+x_n), \\
\frac{\partial \Phi}{\partial y_n}(y-x) & = \frac{\partial \Phi}{\partial u} \frac{\partial u}{\partial y_n} \qquad u = |y-x|, \; \frac{du}{dy_n} =\frac{y_n-x_n}{|y-x|}, \\
& = \frac{-(n-2)}{n(n-2)\alpha (n)} |y-x|^{-(n-2)-1} \frac{y_n-x_n}{|y-x|} \\
& = \frac{-1}{n\alpha (n)} \frac{|y-x|}{|y-x|^n} \frac{y_n-x_n}{|y-x|} = \frac{-1}{n\alpha (n)} \frac{y_n-x_n}{|y-x|^n} \\
\end{split}
\end{gather*}
 
Physics news on Phys.org
I think I figured it out.
\begin{gather}
\begin{split}
u & = |y-x| = \left( \sum_{i=1}^{n} (y_i-x_i)^2 \right)^\frac{1}{2} \\
& = \frac{du}{dy_n} = \frac{1}{2}\left( \sum_{i=1}^{n} (y_i-x_i)^2 \right)^\frac{-1}{2} 2\sum_{i=1}^{n}(y_i-x_i) = \frac{y_n-x_n}{|y-x|^n}. \\
\frac{\partial \Phi}{\partial y_n}(y-x) & = \frac{\partial \Phi}{\partial u} \frac{\partial u}{\partial y_n} = \frac{-(n-2)}{n(n-2)\alpha (n)} |y-x|^{-(n-2)-1} \frac{y_n-x_n}{|y-x|} \\
\end{split}
\end{gather}
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top