How Do You Derive Green's Function Using Vector Calculus?

yungman
Messages
5,741
Reaction score
294
The normal form of Green's function is ##\oint_c\vec F\cdot \hat n dl'=\oint_{s}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial y}\right)dxdy##

I want to get to
\oint _cMdy-Ndx=\oint_{s}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial y}\right)dxdy

Let ##\vec F=\hat x M(x,y)+\hat y N(x,y)##
Let a rectangle area A with corners: ##(x,y),\;(x+\Delta x,y),\;(x+\Delta x,y+\Delta y),\;(x,y+\Delta y)##

\oint_c\vec F\cdot \hat n dl'=\int_{right}\vec F\cdot \hat x dy+\int_{left}\vec F\cdot(- \hat x) dy+\int_{top}\vec F\cdot \hat y dx+\int_{bottom}\vec F\cdot(- \hat y) dx
=\int_c M(x+\Delta x,y) dy-\int_c M(x,y) dy+\int_c N(x,y+\Delta y) dx- \int_c N(x,y)dx\;=\;\oint_{s}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial y}\right)dxdy

I can't get ##\oint _c Mdy-Ndx##

Please help

Thanks
 
Physics news on Phys.org
LCKurtz said:
Most calculus books have a proof of Green's theorem for regions as general as oval shapes. Also on the internet there are proofs. One is here:

http://www.math.mcgill.ca/jakobson/courses/ma265/green.pdf

I know there are tons of proofs using graph of type I and type II regions. But I want to proof without using graph and just by vector calculus. I have a question on Page 4 of the link you provided, the formula on the top of page 4:

\int_c\vec F\cdot(\hat T\times\hat k)ds=\int_c (\hat k \times \vec F)\cdot \hat T ds

I want to verify how to get
\int_c (\hat k \times \vec F)\cdot \hat T ds=\int-Qdy+Pdx
\vec s=\hat x x +\hat y y\Rightarrow\;d\vec s=\hat x dx +\hat y dy=\hat T ds
\hat k\times \vec F=-\hat x Q+\hat y P\;\Rightarrow\; (\hat k \times \vec F)\cdot \hat T ds=-Qdx+Pdy
\Rightarrow \;\int_c (\hat k \times \vec F)\cdot \hat T ds=\int_c -Qdx+Pdy

Thanks
 
Last edited:
Back
Top