How Do You Derive the Time-Averaged Energy Density from Jackson's Formulation?

schrodingerscat11
Messages
86
Reaction score
1

Homework Statement


Given the energy density expression from Jackson
\frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big) (Eq. 6.106)

Show the missing steps to arrive at the time-averaged energy density
\frac{1}{4}\big(\epsilon\mathbf{E}\cdot\mathbf{E}^*+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}^*\big) (Eq. 7.13)

Homework Equations


See problem above.
\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt (time-averaged quantity)

The Attempt at a Solution


\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt
\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big) dt
\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\epsilon\mathbf{E}+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}\big) dt

\mathbf{E}=\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}
\mathbf{B}=\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}

\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

T=\frac{2\pi}{\omega}

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big) dt

Let A=\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big)

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)A~dt

Question: Is the integral \int_0^{\frac{2\pi}{\omega}}e^{2i\omega t} dt equal to zero?
I get 1 -1 = 0, but then I cannot prove what I'm proving with this number. :(

Thanks.
 
Physics news on Phys.org
physicsjn said:
Question: Is the integral \int_0^{\frac{2\pi}{\omega}}e^{2i\omega t} dt equal to zero?
I get 1 -1 = 0, but then I cannot prove what I'm proving with this number. :(
Yes it is (apart from a prefactor, it is equivalent to ##\int_0^{2\pi} e^{i t} dt##)

Your expression for E should be real as there are no complex electric fields. If you take the calculate E everywhere, this problem will disappear.
 
  • Like
Likes schrodingerscat11
Actually, since it was due today, I kinda followed a solution in Wikipedia for Poynting vector (attached is the screenshot of Wikipedia solution. But I replaced the expression with the one used for energy density. In my new solution, the integral above was indeed zero, but there were new trems created by all the crossmultiplying done.I am not sure though if I did it right. But I did managed to arrive at the final expression. But thanks anyways. :)
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top