How Do You Differentiate \( \arctan(\sqrt{3x}) \)?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The differentiation of the function \( y = \tan^{-1}(\sqrt{3x}) \) can be approached using both standard and implicit differentiation methods. The derivative is calculated as \( y' = \frac{3}{2\sqrt{3x}(1 + 3x)} \) when using implicit differentiation. The process involves applying the chain rule and recognizing the relationship between \( y \) and \( x \) through the tangent function. This discussion highlights the importance of understanding both differentiation techniques for solving complex calculus problems.

PREREQUISITES
  • Understanding of basic calculus concepts, including derivatives and the chain rule.
  • Familiarity with implicit differentiation techniques.
  • Knowledge of trigonometric functions, specifically the arctangent function.
  • Ability to manipulate algebraic expressions involving square roots and rational functions.
NEXT STEPS
  • Study the application of implicit differentiation in various contexts.
  • Learn about the properties and applications of the arctangent function in calculus.
  • Explore advanced differentiation techniques, including logarithmic differentiation.
  • Practice solving derivative problems involving composite functions and square roots.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as anyone looking to enhance their understanding of differentiation techniques and trigonometric functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$
 
Physics news on Phys.org
That's correct.
 
karush said:
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$

I would be more inclined to use implicit differentiation in this case...

$\displaystyle \begin{align*} y &= \arctan{ \left( \sqrt{3\,x} \right) } \\ \tan{ \left( y \right) } &= \sqrt{3\,x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \tan{(y)} \right] &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 3\,x \right) ^{\frac{1}{2}} \right] \\ \frac{\mathrm{d}}{\mathrm{d}y}\,\left[ \tan{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= 3 \cdot \frac{1}{2}\,\left( 3\,x \right) ^{-\frac{1}{2}} \\ \sec^2{(y)}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \tan^2{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \left( \sqrt{3\,x} \right) ^2 \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left( 1 + 3\,x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x} \,\left( 1 + 3\,x \right) } \end{align*}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K