MHB How Do You Differentiate \( \arctan(\sqrt{3x}) \)?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
To differentiate \( y = \tan^{-1}(\sqrt{3x}) \), the derivative is found using the chain rule, resulting in \( y' = \frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx}(\sqrt{3x}) \). An alternative approach suggested is implicit differentiation, where \( \tan(y) = \sqrt{3x} \) leads to a more complex expression involving \( \sec^2(y) \) and the derivative of \( y \). The implicit method simplifies to \( \frac{dy}{dx} = \frac{3}{2\sqrt{3x}(1 + 3x)} \). Both methods yield valid derivatives, highlighting different techniques for differentiation. The discussion emphasizes understanding the application of both chain and implicit differentiation in calculus.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$
 
Physics news on Phys.org
That's correct.
 
karush said:
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$

I would be more inclined to use implicit differentiation in this case...

$\displaystyle \begin{align*} y &= \arctan{ \left( \sqrt{3\,x} \right) } \\ \tan{ \left( y \right) } &= \sqrt{3\,x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \tan{(y)} \right] &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 3\,x \right) ^{\frac{1}{2}} \right] \\ \frac{\mathrm{d}}{\mathrm{d}y}\,\left[ \tan{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= 3 \cdot \frac{1}{2}\,\left( 3\,x \right) ^{-\frac{1}{2}} \\ \sec^2{(y)}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \tan^2{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \left( \sqrt{3\,x} \right) ^2 \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left( 1 + 3\,x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x} \,\left( 1 + 3\,x \right) } \end{align*}$
 

Similar threads

Replies
2
Views
2K
Replies
16
Views
3K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K