_joey
- 44
- 0
Given:
P(X=x, Y=y)=\frac{a^ye^{-2a}}{x!(y-x)!} where x=0,1,2,...y and y=0,1,2...\infty, and a>0
Find P(X=x) and P(Y=y)
An example is provided in a book on books.google.com
Page 96
http://books.google.com.au/books?id...AEwCTgK#v=onepage&q=marginal discrete&f=false
Here is my attempted solution
p_{X}(x)=\Sigma_{y=0}^{\infty}\frac{a^ye^{-2a}}{x!(y-x)!}=e^{-2a}+ae^{-2a}+\frac{a^2e^{-2a}}{x!(2-x)!}+...+\frac{a^ne^{-2a}}{x!(n-x)!}
And then I cannot simplify this serie. Any comments and suggestions will be very much appreciated
P(X=x, Y=y)=\frac{a^ye^{-2a}}{x!(y-x)!} where x=0,1,2,...y and y=0,1,2...\infty, and a>0
Find P(X=x) and P(Y=y)
An example is provided in a book on books.google.com
Page 96
http://books.google.com.au/books?id...AEwCTgK#v=onepage&q=marginal discrete&f=false
Here is my attempted solution
p_{X}(x)=\Sigma_{y=0}^{\infty}\frac{a^ye^{-2a}}{x!(y-x)!}=e^{-2a}+ae^{-2a}+\frac{a^2e^{-2a}}{x!(2-x)!}+...+\frac{a^ne^{-2a}}{x!(n-x)!}
And then I cannot simplify this serie. Any comments and suggestions will be very much appreciated