tim_lou said:
what if n is not an integer, an irrational number for example. Then how can one prove it without using Newton's series?
I know one can prove the rule for rational number using chain rule and implicit differentiation, but what about irrational numbers?
f(x)=x
c,f'(x)=?
\triangle f=(x+\triangle x)^c -x^c=\left(x+(1+\frac{\triangle x}{x})\right)^c-x^c=<br />
x^c\left(\left(1+\frac{\triangle x}{x}\right)^c-1\right).
\frac{\triangle f}{\triangle x}=x^{c-1}\cdot \frac{\left(1+\frac{\triangle x}{x}\right)^c-1}<br />
{\frac{\triangle x}{x}}=x^{c-1}\cdot \frac{(1+u)^c-1}{u};u=\frac{\triangle x}{x}
Lemma:
\lim_{u\to 0}\frac{(1+u)^c-1}{u}=c
Proof:
Let (1+u)^c-1=\phi.
Becouse the function (1+u)
c is continuous and defined in u=0 we conclude:
\lim_{u\to 0}(1+u)^c =1\longrightarrow \lim_{u\to 0}\phi =0.
(1+u)^c=1+\phi\rightarrow c\cdot ln(1+u)=ln(1+\phi);\frac{c\cdot ln(1+u)}{ln(1+\phi)}=1<br />
\longrightarrow \frac{(1+u)^c-1}{u}=\frac{\phi}{u}=\frac{\phi}{u}\cdot\frac{c\cdot ln(1+u)}{ln(1+\phi)}=<br />
c\frac{\phi}{ln(1+\phi)}\cdot\frac{ln(1+u)}{u}
\lim_{u\to 0}\frac{(1+u)^c-1}{u}=<br />
c\cdot\lim_{\phi \to 0}\frac{1}{\frac{1}{\phi}ln(1+\phi)}\cdot \lim_{u\to 0}\frac{1}{u}ln(1+u)=<br />
c\lim_{\phi \to 0}\frac{1}{ln(1+\phi)^{1/\phi}}\cdot \lim_{u\to 0}ln(1+u)^{1/u}=c
(Becouse \lim_{u\to 0}(1+u)^{\frac{1}{u}}=ln\ e=1).This concludes proof of the lemma.
Therefore:
f'(x)=\lim_{\triangle x \to 0}\frac{\triangle f}{\triangle x}=x^{c-1}\lim_{u\to 0}<br />
\frac{(1+u)^c-1}{u}=x^{c-1}\cdot c
QED
dextercioby said:
The generalized binomial formula will solve it. That's right, the one expressing Pochhammer's symbols in terms of the Gamma function.
Daniel.
Possible.
But why tu use nuclear weapon when one can kill prey by a bow and arrow?