How do you remember all of the math applictaions?

  • Thread starter Thread starter AznBoi
  • Start date Start date
AI Thread Summary
The discussion centers on effective methods for reviewing math concepts, particularly trigonometric identities. Participants emphasize the importance of practice, noting that consistent use of mathematical concepts aids retention and reduces the need for memorization. Reference materials, such as calculus textbooks—specifically mentioning James Stewart's book—are recommended for their comprehensive tables of formulas, which can help verify work during practice. The conversation also touches on the use of mnemonic techniques to memorize formulas, suggesting that creating stories around mathematical symbols can enhance recall. While some express frustration with the necessity of obscure identities in tests, a consensus emerges that mastering a few key identities can facilitate deriving others when needed. Overall, the dialogue highlights the balance between practice, reference materials, and mnemonic strategies in mastering math concepts.
AznBoi
Messages
470
Reaction score
0
What is the easiest way to review math concepts, trig identities and such? Are sparknotes charts good? Does anyone know of any good book or review sheet that gives you many of the useful laws, formulas and what not? Thanks.
 
Physics news on Phys.org
There's nothing better than being mathematically active.
 
AznBoi said:
How do you remember all of the math applictaions?
Practice .
 
Werg22 said:
There's nothing better than being mathematically active.

I agree. The more you use something, the harder it is to forget it. It's almost as if you don't need to memorize things in the first place if you use them enough.
 
Yeah I'm practicing right now and I remember many things, but usually I'm skeptical about if I doing it right or not. I would like some sort of reference that I can check my work with. That way I will have a better chance of remembering the correct information.
 
Most calculus books have tables with all of the formulas that you're probably looking for. James Stewart's calculus book has a very useful front and back end paper for single variable calculus, as well as for algebraic, geometric, and trigonometric relations. As others have said, this is by no means a substitute for good old-fashioned practice. But it'll help you check your work while you're practicing, if that's what you need.
 
Is Sparknotes charts good? Has anyone used them for math before?
 
So how do you guys review everything? With everything else going on in school how do you find the time? What do you review, from where, and how what methods do you use? Do you review 10 min everday? 1 hr per week? What is the best amount of time I should spend review so I can permanently drill the knowledge into my mind?? thanks
 
3 to 4 hours /day
 
  • #10
G01 said:
I agree. The more you use something, the harder it is to forget it. It's almost as if you don't need to memorize things in the first place if you use them enough.

Haha, I see you watch The Office, hilarious show!
 
  • #11
practice makes perfect :)
 
  • #12
One of the more frustrating things I've encountered during my math classes are professors that enjoy putting problems on tests that require obscure trig identities in order to solve.

Mnemonic methods work best for me when I have to memorize a large number of formulas. I usually assign verbs to arithmetic symbols, nouns to variables, locations to constants, and other stuff to grouping symbols. It let's me create a story in my head that's much easier for me to remember then trying to do it by route. Of course, you should be able to derive most equations on your own if you get stuck and can’t remember something; this is mainly for things like trig identities, integral tables, derivative tables, laplace transforms, etc…..
 
  • #13
kdinser said:
One of the more frustrating things I've encountered during my math classes are professors that enjoy putting problems on tests that require obscure trig identities in order to solve.
One only needs to know three, or so, trig identities. All others can be derived from these. Don't waste time trying to memorise absolutely everything!
 
  • #14
That's the problem cristo... if you only have three or so identities memorized, when you reach a problem that requires knowing the quintuple sine formula, you just might have no idea that's what you need to derive
 
  • #15
Werg22 said:
Haha, I see you watch The Office, hilarious show!

It's a great show! Absolute comedic genius.
 
Back
Top