iRaid
- 558
- 8
Homework Statement
(x^{2}+1)(tan y)(y')=x
Homework Equations
The Attempt at a Solution
(x^{2}+1)(tan y)(\frac{dy}{dx})=x
(tan y)dy=\frac{x}{x^{2}+1}dx
\int tanydy=\int \frac{x}{x^2+1}dx \\ -ln|cos y|=\frac{ln|x^{2}+1|}{2}+C
e^{-ln(cosy)}=e^{\frac{ln(x^{2}+1)}{2}+C}
\frac{1}{cosy}=e^{C}(\sqrt{x^2+1})
cosy=\frac{1}{D\sqrt{x^{2}+1}} \implies y=cos^{-1}\bigg(\frac{1}{D\sqrt{x^2+1}}\bigg)
D represents e^C just fyi.
Wondering if this is correct and if my work makes sense.
Last edited: