How Does a Head Crash Affect Hard Drive Spin Dynamics?

AI Thread Summary
The discussion focuses on the effects of a head crash on hard drive dynamics, particularly regarding torque and angular acceleration calculations. The user attempts to calculate the torque exerted by the read/write head during a crash, initially using the inner track radius but questions its validity. They compute the moment of inertia but receive feedback indicating a significant error in their calculation, suggesting their result is excessively high. The conversation emphasizes the importance of using the correct radius for torque calculations and clarifies the relationship between torque, moment of inertia, and angular acceleration. Accurate calculations are crucial for understanding how a head crash impacts hard drive performance.
emmaden
Messages
1
Reaction score
0

Homework Statement



A hard drive consists of a rigid circular platter (or disk) of radius 0.05 m and thickness 0.002 m. In normal operating conditions, the hard drive spins at 7200 rotations per minute. The read/write head is a light metallic element that floats just above the platter and both senses and imposes the magnetic structure that embody the digital data stored on the disk. The head moves radially in and out across the disk to write data in concentric circular tracks that fill the surface of the platter. When the head crashes, it scrapes against the surface of the platter, destroying the disk. During the crash the read/write head scrapes against the disk providing a frictional force. Assume that just before the head crash the disk is rotating at 7200 rpm. You can ignore any friction at the bearing. For this situation, the frictional force due to the read/write head is perpendicular to the radius vector, so that the torque has a magnitude of T=r*F(f) ...(torque = radius * force of friction). The moment of inertia of a uniform disk is I=(1/2)(M)(R²).
01a.
If the head crashes while it is writing on one of the inner tracks, 0.0053 m from the axis, then what is the torque it exerts on the 0.0406 kg disk if the force of friction from the read/write head is 0.401N?

01b.
What is the angular acceleration associated with that torque?

02.
How long will it take the disk to stop spinning once the crash begins?

03.
How many revolutions does the disk undergo as it spins to a stop after the crash?

04.
If the head crashes when it is writing on one of the outer tracks, 0.033 m from the axis, then how long does it take for the disk to slow to a stop after the crash?

If anyone could explain how to attack this problem and show work, that would be so helpful. Thank you soooo much.

Homework Equations


•I=(1/2)(M)(R²)
•τ=r*F(f)
•τ=Iα
The 4 equations that relate:
1. initial angular velocity (ωi)
2. final angular velocity (ωf)
3. angular acceleration (α)
4. Δθ (honestly don't know what this stands for... change in distance?)
time (t)
•ωf=ωi + αt
•Δθ=ωi + (1/2)αt²
•Δθ=1/2(ωi+ωf)t
•ωf²=ωi²+2α(Δθ)

The Attempt at a Solution



For part 1a, I tried using the equation τ=r*F(f) and plugged in 0.0053 m for r and 0.401 N for F(f), and got τ=0.0021253 Nm. But is that the right radius to use? Would you instead use the 0.05 m radius? It seems like a ridiculous amount to me.
For part 1b, I used the equation τ=Iα, plugging in 0.0021253 Nm for τ and 0.005075 kg·m² for I (because I=(1/2)(M)(R²), so I=(1/2)(0.0406kg)(0.05²), so I=0.005075 kg·m²), and got α=0.4188 rad/s2.

Am I on the right track with this problem? My numbers just don't sound right to me and I don't know if I'm using the correct radius at some points. Any help is appreciated, thanks so much.
 
Physics news on Phys.org
emmaden said:
For part 1a, I tried using the equation τ=r*F(f) and plugged in 0.0053 m for r and 0.401 N for F(f), and got τ=0.0021253 Nm. But is that the right radius to use? Would you instead use the 0.05 m radius? It seems like a ridiculous amount to me.
For part 1b, I used the equation τ=Iα, plugging in 0.0021253 Nm for τ and 0.005075 kg·m² for I (because I=(1/2)(M)(R²), so I=(1/2)(0.0406kg)(0.05²), so I=0.005075 kg·m²), and got α=0.4188 rad/s2.

Am I on the right track with this problem? My numbers just don't sound right to me and I don't know if I'm using the correct radius at some points. Any help is appreciated, thanks so much.

You are on the right track. However, you made a mistake in computing the moment of inertia. Your result is a hundred times greater than mine.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top