phantomvommand said:
It seems, that for the velocity vector v to change direction but retain its magnitude, the impulse must be directed at an angle ## 90 - \frac {\theta} {2}## from the ground. This would give a resultant velocity with magnitude same as before and angled at ##\theta##. May I know why the angle of the impulse is ## 90 - \frac {\theta} {2}##, instead of perpendicular to the slope (ie ## 90 - \theta ##)
Say a particle is traveling along the ##x## axis at a speed ##v##, until it reaches the origin at ##t=0## and is subject to a kick ##F(t) = I\delta(t)## parallel to the ##y## axis. It's momentum in the ##y## direction changes as ##\Delta p_y = I \int \delta(t) dt = I## and it obtains a speed ##v_y = I / m## in the ##y## direction. Its direction has changed by an angle ##\theta = \mathrm{arctan}\left( I/ mv \right)##. Except, its speed is now ##v' = \sqrt{v^2 + v_y^2} \geq v##.
What if you fixed this by kicking it with an additional force ##G(t) = -J \delta(t)## parallel to the ##x## axis? It's momentum in the ##x## direction changes as ##\Delta p_x = -J## and its speed in the ##x## direction reduces to ##v_x = v - J/m##. The total speed of the particle is then\begin{align*}
v' = \sqrt{v_x^2 + v_y^2} = \sqrt{v^2 - 2vJ/m + J^2/m^2 + I^2 / m^2}
\end{align*}If the speed has not changed, ##v' = v##, then the condition relating ##I## and ##J## is ##J^2 -2mvJ + I^2 = 0##,\begin{align*}\implies J &= \dfrac{2mv - \sqrt{4 m^2 v^2 - 4I^2}}{2} = mv - \sqrt{m^2 v^2 - I^2}
\end{align*}The smaller root is taken since ##I, J \leq mv##. The speed in the ##x## direction, in terms of ##I##, would be\begin{align*}
v_x = \sqrt{v^2 - I^2/m^2}
\end{align*}The particle travels at an angle ##\theta## which satisfies\begin{align*}
\tan \theta = \dfrac{1}{\sqrt{m^2 v^2/I^2 - 1}} \equiv \dfrac{1}{\sqrt{\kappa^2 -1}} \\
\end{align*}where ##\kappa \equiv mv/I##. Meanwhile, the total impulse ##(-J, I)## applied to the ball was at an angle of ##\theta_\mathrm{im}## to the vertical, with\begin{align*}
\tan \theta_\mathrm{im} = J/I = \kappa - \sqrt{\kappa^2 - 1}
\end{align*}What can you say about the angles ##\theta## and ##\theta_{\mathrm{im}}##? Is this what you expect, by symmetry?