MHB How Does Archimedes' Estimation of Pi Hold for n=4, 8, 16, 32, ...?

nacho-man
Messages
166
Reaction score
0
It has been eons since I've done any trigonometry, but I just can't prove how this following relationship holds for $n = 4, 8, 16, 32, \dots$

The relation is:
$$
2 \biggl( \! \frac{A_{2n}}{n} \! \biggr)^2 = \, 1 - \Biggl( \sqrt{1 - \frac{2A_n^{\phantom{X}}}{n}} \, \Biggr)^{\!2}
$$

I've subbed in points, and it definitely holds.

Using this image as reference, a polygon with $n$ edges and $A_n$ the entire area, we can estimate (albeit very slowly) a unit circle's area.View attachment 4126Any help would be appreciated.
 

Attachments

  • kk.jpg
    kk.jpg
    18.4 KB · Views: 110
Mathematics news on Phys.org
In your equation the right-hand-side takes a square root and then immediately squares the result, what does that amount to? Once you've simplified your equation using that fact, think about what $A_n / n$ and $A_{2n} / n$ represent geometrically, and you can then perhaps reduce the algebra problem to a geometric statement about triangles.
 
Bacterius said:
In your equation the right-hand-side takes a square root and then immediately squares the result, what does that amount to? Once you've simplified your equation using that fact, think about what $A_n / n$ and $A_{2n} / n$ represent geometrically, and you can then perhaps reduce the algebra problem to a geometric statement about triangles.
I have solved this problem now.

Thanks :)
 
nacho said:
I have solved this problem now.

Thanks :)

Great! It's good etiquette to post your solution so that future visitors who come across this thread can also benefit from it :)
 
Bacterius said:
Great! It's good etiquette to post your solution so that future visitors who come across this thread can also benefit from it :)

Yes! definitely.

I will post the solution some time next week, when my work has been assessed (don't want to post a solution with errors and mislead someone :( )
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top