How Does Changing the Right-Hand Side of the Matrix Affect the ODE Solution?

Bruno Tolentino
Messages
96
Reaction score
0
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\ <br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\ <br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?

Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)

Or other form?
 
Physics news on Phys.org
Bruno Tolentino said:
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\<br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\<br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?
I don't see how you could get the matrix equation you show, with ##
\begin{bmatrix}
x_1(t)\\
x_2(t)\\
\end{bmatrix}## on the right. The zero term in the
##\begin{bmatrix}
0\\
x(t)\\
\end{bmatrix}##
vector comes from the homogeneous equation, which in this context is y'' -(a + b)y' + (ab)y = 0. The x(t) term in that vector comes from the related nonhomogeneous equation, which is y'' -(a + b)y' + (ab)y = x(t).
Bruno Tolentino said:
Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)
Bruno Tolentino said:
The form above doesn't make any sense to me. the expression on the left side can't be equal to two different expressions.
Or other form?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top