Bruno Tolentino
- 96
- 0
Given a ODE like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)
The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)
So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u'(t)\\ <br /> v'(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) & y_2(t) \\<br /> y_1'(t) & y_2'(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\ <br /> x(t)\\<br /> \end{bmatrix} Where:
y1(t) = exp(a t)
y2(t) = exp(b t)
So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u'(t)\\ <br /> v'(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) & y_2(t) \\<br /> y_1'(t) & y_2'(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\ <br /> x_2(t)\\<br /> \end{bmatrix}
How would be the right side of the ODE for matrix equation above?
Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)
Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)
Or other form?
y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)
The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)
So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u'(t)\\ <br /> v'(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) & y_2(t) \\<br /> y_1'(t) & y_2'(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\ <br /> x(t)\\<br /> \end{bmatrix} Where:
y1(t) = exp(a t)
y2(t) = exp(b t)
So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u'(t)\\ <br /> v'(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) & y_2(t) \\<br /> y_1'(t) & y_2'(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\ <br /> x_2(t)\\<br /> \end{bmatrix}
How would be the right side of the ODE for matrix equation above?
Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)
Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)
Or other form?