I How Does Distance to Proxima Centauri Affect Simultaneous Events?

  • I
  • Thread starter Thread starter Ben S
  • Start date Start date
  • Tags Tags
    distance
Ben S
Messages
7
Reaction score
4
TL;DR Summary
Explain this statement: "Proxima Centauri is approximately four light-years away. For any particular event on Earth, there is an eight-year span of events on Proxima Centauri that could count as simultaneous with it, depending on your reference frame."
Referring to this statement:
"Proxima Centauri is approximately four light-years away. For any particular event on Earth, there is an eight-year span of events on Proxima Centauri that could count as simultaneous with it, depending on your reference frame."

How does the distance between Earth and Proxima Centauri (~4 light-years) affect the span of time of simultaneous events on Proxima Centauri?


This statement is from Sean Carroll's book- The Biggest Ideas in the Universe (Space, Time, and Motion).
 
Physics news on Phys.org
In order for there to exist a frame where two events are simultaneous, they must not be within each other's light cones. For a given event on Earth, consider what the light cone of that event looks like, particularly around a distance 4 ly away from Earth.
 
  • Like
Likes FactChecker
Ben S said:
How does the distance between Earth and Proxima Centauri (~4 light-years) affect the span of time of simultaneous events on Proxima Centauri?
Anything you have seen happening is definitely in your past. Any event where people see something you do now is definitely in your future. For the Centauri system, there's an eight year gap between a little green man waving at you and him being able to see you react. If "now" is when you react, "now on Proxima" must lie somewhere in those eight years.

In Newtonian physics we simply assert that now is now and everybody agrees what that means. Part of the development of relativity was discovering that this isn't correct - you can pick literally any time in that eight year gap and call it "now on Proxima". There are no physical consequences because the fact that nothing can travel faster than light means that you can't react to something that's happening "now" anyway.

So as long as you keep your definition of "now" out of your definite past (formally called your causal past) and definite future (causal future) then you're pretty much free to define it. Which is the point Carroll is making.

Note that he doesn't say "the span of time of simultaneous events". He just says that's the span of time from which you get to pick a moment to call now.
 
Last edited:
  • Like
Likes FactChecker
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top