How Does Integration by Parts Solve the Integral of Tanh(x)/(xe^x)?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$ \int^{\infty}_0 \frac{\tanh(x)}{xe^x} \, dx $$ using various mathematical techniques, including differentiation under the integral sign and alternative methods of integration. Participants explore different approaches to tackle the problem without reaching a consensus on a single method.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes using differentiation under the integral sign to transform the integral into a different form involving the Digamma function.
  • Another participant suggests an alternative method that avoids differentiation under the integral sign, involving a double integral and series expansion.
  • There is a discussion about the validity and applicability of the methods used, with one participant humorously questioning the use of differentiation under the integral sign by physicists.
  • Both methods lead to expressions involving the Gamma function, but the participants do not agree on which method is superior or more appropriate.

Areas of Agreement / Disagreement

Participants express differing opinions on the methods used to evaluate the integral, with no consensus reached on a preferred approach. Each method has its proponents, and the discussion remains unresolved regarding the best technique.

Contextual Notes

The discussion includes complex mathematical expressions and transformations that may depend on specific assumptions about convergence and the properties of the functions involved. Some steps in the derivations are not fully resolved, leaving room for further exploration.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$ \int^{\infty}_0 \frac{\tanh(x) }{xe^x} \, dx $$

$\tanh(x) \text{ is the tangent hyperbolic function }$
 
Physics news on Phys.org
Cool Problem!(Drunk)

I will solve this using differentiation under the integral sign.

The integral can be written in another form

$$ \int_0^\infty \frac{\tanh(x)}{x e^x}dx = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt$$

Let us define

$$ I(\alpha) = \int_0^1 \frac{t^\alpha-1}{(t^2+1)\ln t}dt$$

$$\begin{aligned} I'(\alpha) &= \int_0^1 \frac{t^\alpha}{t^2+1}dt \\ &= \int_0^1 t^\alpha \sum_{k=0}^{\infty}(-1)^k t^{2k} \ dt \\ &= \sum_{k=0}^\infty (-1)^k \int_0^1 t^{\alpha + 2k}\ dt \\ &= \sum_{k=0}^\infty \frac{(-1)^k}{\alpha +2k+1} \\ &= \frac{1}{\alpha+1}\sum_{k=0}^\infty \frac{(-1)^k}{1+\left( \dfrac{2}{\alpha + 1}\right)k} \\ &= \frac{1}{4}\left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\}\end{aligned}$$

\(\psi (*)\) is the Digamma Function.

$$\begin{aligned} I(\alpha) &= \frac{1}{4}\int \left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\} d\alpha \\ &= \left(\ln \left( \Gamma \left( \frac{3+\alpha}{4}\right)\right)- \ln \left( \Gamma \left( \frac{1+\alpha}{4}\right)\right)\right)+C \end{aligned}$$

By letting \(\alpha = 0\), we obtain

$$ C= \ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)$$

Therefore

$$ \begin{aligned} I(\alpha)&= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right)}\right)+\ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right) \\ &= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right) \Gamma \left( \dfrac{3}{4}\right)}\right)\end{aligned} $$

Our integral is a special case when \(\alpha = 2\), therefore

$$ I(2) = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt = $$

$$\ln \left( \frac{\Gamma \left( \dfrac{5}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)^2} \right) = {2\ln \left( \frac{2\Gamma \left(\dfrac{5}{4} \right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)}$$
 
sbhatnagar said:
I will solve this using differentiation under the integral sign.
I thought only Physicists were allowed to do that! Of course we rarely check to see if we can...

-Dan
 
Here's another method to do it without using differentiation under the integral sign.

$$ \begin{aligned} I &= \int_0^1 \frac{t^2-1}{(t^2+1) \ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1}\frac{t-1}{\ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1} \int_0^1 t^x dx \ dt \\
&= \int_0^1 \int_0^1 \frac{t^{x+1}+t^x}{t^2+1}dt \ dx \\
&= \int_0^1 \int_0^1 (t^{x+1}+t^x)\sum_{n=0}^{\infty}(-1)^n t^{2k} dt \ dx \\
&= \int_0^1 \left( \frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\cdots \right)dx \\
&=\ln\left(\frac{2}{1} \right)+\ln\left(\frac{3}{2} \right)-\ln\left(\frac{4}{3} \right)-\ln\left(\frac{5}{4} \right)+\cdots \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(4k+3)^2}{(4k+1)(4k+5)} \right] \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(k+\frac{4}{3})^2}{(k+ \frac{1}{4} )(k+\frac{5}{4})}\right]
\end{aligned}$$

This product can be tackled using the formula

$$ \prod_{k=0}^{\infty} \frac{(k+a_1)(k+a_2)(k+a_3) \cdots (k+a_j)}{(k+b_1)(k+b_2)(k+b_3) \cdots (k+b_j)} = \frac{\Gamma(b_1) \Gamma(b_2) \Gamma(b_3) \cdots \Gamma (b_j)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3) \cdots \Gamma (a_j)}$$

where $a_1+a_2+\cdots +a_j = b_1+b_2+\cdots +b_j$ and no $b_j$ is 0 or a negative integer. Applying this gives

$$ I= \ln \left( \dfrac{\Gamma \left( \frac{1}{4}\right)\Gamma \left( \frac{5}{4}\right)}{\Gamma \left( \frac{3}{4}\right)^2}\right)$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K