How Does Integration by Parts Solve the Integral of Tanh(x)/(xe^x)?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral $$ \int^{\infty}_0 \frac{\tanh(x)}{xe^x} \, dx $$ can be evaluated using integration techniques such as differentiation under the integral sign and the properties of the Digamma function. The integral is transformed into $$ I(\alpha) = \int_0^1 \frac{t^\alpha-1}{(t^2+1)\ln t}dt $$, leading to the result $$ I(2) = \ln \left( \frac{\Gamma \left( \dfrac{5}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)^2} \right) $$, which simplifies to $$ 2\ln \left( \frac{2\Gamma \left(\dfrac{5}{4} \right)}{\Gamma \left( \dfrac{3}{4}\right)}\right) $$.

PREREQUISITES
  • Understanding of integral calculus, specifically improper integrals.
  • Familiarity with the properties of the Digamma function.
  • Knowledge of the Gamma function and its applications in calculus.
  • Experience with series expansions and convergence criteria.
NEXT STEPS
  • Study the properties and applications of the Digamma function in advanced calculus.
  • Learn about differentiation under the integral sign and its implications in integral evaluation.
  • Explore the Gamma function and its relationship with factorials and integrals.
  • Investigate series convergence and techniques for evaluating infinite products.
USEFUL FOR

Mathematicians, advanced calculus students, and researchers in mathematical analysis who are interested in integral evaluation techniques and special functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$ \int^{\infty}_0 \frac{\tanh(x) }{xe^x} \, dx $$

$\tanh(x) \text{ is the tangent hyperbolic function }$
 
Physics news on Phys.org
Cool Problem!(Drunk)

I will solve this using differentiation under the integral sign.

The integral can be written in another form

$$ \int_0^\infty \frac{\tanh(x)}{x e^x}dx = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt$$

Let us define

$$ I(\alpha) = \int_0^1 \frac{t^\alpha-1}{(t^2+1)\ln t}dt$$

$$\begin{aligned} I'(\alpha) &= \int_0^1 \frac{t^\alpha}{t^2+1}dt \\ &= \int_0^1 t^\alpha \sum_{k=0}^{\infty}(-1)^k t^{2k} \ dt \\ &= \sum_{k=0}^\infty (-1)^k \int_0^1 t^{\alpha + 2k}\ dt \\ &= \sum_{k=0}^\infty \frac{(-1)^k}{\alpha +2k+1} \\ &= \frac{1}{\alpha+1}\sum_{k=0}^\infty \frac{(-1)^k}{1+\left( \dfrac{2}{\alpha + 1}\right)k} \\ &= \frac{1}{4}\left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\}\end{aligned}$$

\(\psi (*)\) is the Digamma Function.

$$\begin{aligned} I(\alpha) &= \frac{1}{4}\int \left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\} d\alpha \\ &= \left(\ln \left( \Gamma \left( \frac{3+\alpha}{4}\right)\right)- \ln \left( \Gamma \left( \frac{1+\alpha}{4}\right)\right)\right)+C \end{aligned}$$

By letting \(\alpha = 0\), we obtain

$$ C= \ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)$$

Therefore

$$ \begin{aligned} I(\alpha)&= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right)}\right)+\ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right) \\ &= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right) \Gamma \left( \dfrac{3}{4}\right)}\right)\end{aligned} $$

Our integral is a special case when \(\alpha = 2\), therefore

$$ I(2) = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt = $$

$$\ln \left( \frac{\Gamma \left( \dfrac{5}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)^2} \right) = {2\ln \left( \frac{2\Gamma \left(\dfrac{5}{4} \right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)}$$
 
sbhatnagar said:
I will solve this using differentiation under the integral sign.
I thought only Physicists were allowed to do that! Of course we rarely check to see if we can...

-Dan
 
Here's another method to do it without using differentiation under the integral sign.

$$ \begin{aligned} I &= \int_0^1 \frac{t^2-1}{(t^2+1) \ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1}\frac{t-1}{\ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1} \int_0^1 t^x dx \ dt \\
&= \int_0^1 \int_0^1 \frac{t^{x+1}+t^x}{t^2+1}dt \ dx \\
&= \int_0^1 \int_0^1 (t^{x+1}+t^x)\sum_{n=0}^{\infty}(-1)^n t^{2k} dt \ dx \\
&= \int_0^1 \left( \frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\cdots \right)dx \\
&=\ln\left(\frac{2}{1} \right)+\ln\left(\frac{3}{2} \right)-\ln\left(\frac{4}{3} \right)-\ln\left(\frac{5}{4} \right)+\cdots \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(4k+3)^2}{(4k+1)(4k+5)} \right] \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(k+\frac{4}{3})^2}{(k+ \frac{1}{4} )(k+\frac{5}{4})}\right]
\end{aligned}$$

This product can be tackled using the formula

$$ \prod_{k=0}^{\infty} \frac{(k+a_1)(k+a_2)(k+a_3) \cdots (k+a_j)}{(k+b_1)(k+b_2)(k+b_3) \cdots (k+b_j)} = \frac{\Gamma(b_1) \Gamma(b_2) \Gamma(b_3) \cdots \Gamma (b_j)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3) \cdots \Gamma (a_j)}$$

where $a_1+a_2+\cdots +a_j = b_1+b_2+\cdots +b_j$ and no $b_j$ is 0 or a negative integer. Applying this gives

$$ I= \ln \left( \dfrac{\Gamma \left( \frac{1}{4}\right)\Gamma \left( \frac{5}{4}\right)}{\Gamma \left( \frac{3}{4}\right)^2}\right)$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K