How Does Intrinsic Derivative Differ from Covariant Derivative in Geometry?

  • Thread starter Thread starter off-diagonal
  • Start date Start date
  • Tags Tags
    Derivative
off-diagonal
Messages
29
Reaction score
0
What is it? and How different between intrinsic(absolute) derivative and covariant derivative?

What is its geometric interpretation?
 
Physics news on Phys.org
If on a manifold you have two vector fields V and W, then you can take the covariant derivative of V wrt W at every point in the manifold. The vector field W can also be thought of as a family of curves whose tangent vectors form W. The absolute derivative of V at any point on a particular curve in that family is the covariant derivative of V wrt W at that point in the curve.

The geometric idea is that in a vector space, there is an idea of two vectors being parallel. But on a manifold, there is a vector space at each point in the manifold, but there is no predefined notion of vectors at different points on a manifold being parallel. The covariant derivative/absolute derivative defines the notion of "parallel transport" that allows you to say if vectors at two nearby points on a curve are parallel or not.

I checked the definition on p377 of http://books.google.com/books?id=vQ...D+physics+geometry+liek&source=gbs_navlinks_s.
 
Last edited:
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top