<br />
r = \frac {K t} { ( \frac {dr} {dt} )^2 - c }<br />
<br />
( \frac {dr} {dt} )^2 - c = \frac {K t} {r}<br />
<br />
\frac {dr} {dt} = \sqrt{ \frac {K t} {r} + c }<br />
Now let us try a change of variables
<br />
p = \sqrt{ \frac {K t} {r} + c }<br />
<br />
\frac {dp} {dt} = \frac { \frac {K} {r} - \frac {K t} {r^2} \frac {dr} {dt} } { 2 \sqrt{ \frac {K t} {r} + c } }<br />
<br />
\frac {dp} {dt} = \frac { \frac {p^2 - c} {t} - \frac {(p^2 - c)^2} {K t} \frac {dr} {dt} } { 2 p }<br />
<br />
-\frac{ K t ( 2 p \frac {dp} {dt} - \frac {p^2 - c} {t} ) } {(p^2 - c)^2} = \frac {dr} {dt}<br />
<br />
\frac{ K t ( 2 p \frac {dp} {dt} - \frac {p^2 - c} {t} ) } {(p^2 - c)^2} = -p<br />
<br />
\frac {dp} {dt} = \frac { -p \frac {(p^2 - c)^2} {K } + p^2 - c } { 2 p t }<br />
Using separation of variables
<br />
\frac {p dp} {-p \frac {(p^2 - c)^2} {K} + p^2 - c} = \frac {dt} { 2 t }<br />
<br />
\int \frac {p dp} {-p \frac {(p^2 - c)^2} {K} + p^2 - c} = \int \frac {dt} { 2 t }<br />
Now to do the left hand side integral we can apply the method of partial fractions. First we have to factor the whole denominator and to do this we have to find the polynomial's zeroes...
<br />
-p \frac {(p^2 - c)^2} {K} + p^2 - c = 0<br />
we can see when p = \sqrt{c} or p = - \sqrt{c} that the equation is satisfied, therefore these are two of the roots. Expanding...
<br />
p^5 - 2 c p^3 - K p^2 + c^2 p + K c = 0<br />
The polynomial is of order 5 therefore we have 3 more roots to find. Writing...
<br />
( p + \sqrt{c} ) ( p - \sqrt{c} ) ( q p^3 + s p^2 + t p + u ) = 0<br />
for constants q, s, t and u. Expanding this out...
<br />
q p^5 + s p^4 + ( t - c q ) p^3 + ( u - c s ) p^2 - c t p - c u = 0<br />
comparing this equation to the original expanded polynomial we can solve for the coefficients
q = 1
s = 0
t = -c
u = -K
So to find the remaining three roots we need to find the zeroes of
<br />
p^3 - c p = K<br />
Now we make Vièta's Substitution...
<br />
p = y + \frac {c} {3y}<br />
after the substitution is made...
<br />
y^3 + \frac {c^3} {27 y^3} - K = 0<br />
<br />
(y^3)^2 + \frac {c^3} {27} - K y^3 = 0<br />
Using the quadratic formula...
<br />
y^3 = \frac { K \pm \sqrt{ K^2 - 4 \frac {c^3} {27} } } {2}<br />
<br />
y = \sqrt[3]{ \frac { K + \sqrt{ K^2 - 4 \frac {c^3} {27} } } {2} }<br />
OR
<br />
y = \sqrt[3]{ \frac { K - \sqrt{ K^2 - 4 \frac {c^3} {27} } } {2} }<br />
Remember that p = y + \frac {c} {3y}. We will call the two roots \epsilon_+ and \epsilon_- respectively. Now we only have one remaining root to get...
<br />
(p - \epsilon_+) (p - \epsilon_-) ( p - v ) = 0<br />
Expanding...
<br />
p^3 - ( \epsilon_- + \epsilon_+ + v ) p^2 + ( \epsilon_+ \epsilon_- + v ( \epsilon_- + \epsilon_+ ) ) p - v \epsilon_+ \epsilon_- = 0<br />
Comparing this equation to p^3 - c p - K = 0, we can instantly see that
<br />
v = \frac {K} {\epsilon_+ \epsilon_-}<br />
So now we have all the roots and can factor the whole polynomial...
<br />
\int \frac {p dp} {-p \frac {(p^2 - c)^2} {K} + p^2 - c} =<br />
<br />
\int \frac {p dp} {(p+\sqrt{c})(p-\sqrt{c})(p-\epsilon_+)(p-\epsilon_-)(p-v)}<br />
Apply the method of partial fractions
<br />
\frac {1} {(p+\sqrt{c})(p-\sqrt{c})(p-\epsilon_+)(p-\epsilon_-)(p-v)} =<br />
<br />
\frac {a_1} {p+\sqrt{c}} + \frac {a_2} {p-\sqrt{c}} + \frac {a_3} {p-\epsilon_+} + \frac {a_4} {p-\epsilon_-} + \frac {a_5} {p-v}<br />
Therefore...
<br />
1 = a_1 (p-\sqrt{c})(p-\epsilon_+)(p-\epsilon_-)(p-v) + a_2 (p+\sqrt{c})(p-\epsilon_+)(p-\epsilon_-)(p-v) <br />
<br />
+ a_3 (p+\sqrt{c})(p-\sqrt{c})(p-\epsilon_-)(p-v) + a_4 (p+\sqrt{c})(p-\sqrt{c})(p-\epsilon_+)(p-v) +<br />
<br />
a_5 (p+\sqrt{c})(p-\sqrt{c})(p-\epsilon_+)(p-\epsilon_-)<br />
Now a_1, a_2, a_3, a_4 and a_5 are constants and are chosen so that the equation above is satisfied...
So now we have transformed the differential equation into two doable integrals
<br />
\int p ( \frac {a_1} {p+\sqrt{c}} + \frac {a_2} {p-\sqrt{c}} + \frac {a_3} {p-\epsilon_+} + \frac {a_4} {p-\epsilon_-} + \frac {a_5} {p-v} ) dp = \int \frac {dt} { 2 t }<br />
After these integrals have been evaluated you can substitute p = \sqrt{ \frac {K t} {r} + c } back into the equation, solve for r thus solving the differential equation.