How does Pascal triangle apply to (a+b+c)^n and (a+b+c+...+d)^n?

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Pascal Triangle
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
does pascal triangle use in this equation (a+b+c)^n i know it is used in (a+b)^n?

and how could you solve for m number of numbers to the power n?
(a+b+c+...+d)^n
||
\/
m numbers.
 
Mathematics news on Phys.org
No, Pascal's triangle give binomial coefficients.

What you need are "multinomial" coefficients.

The binomial coefficients are given by nCm= n!/(m!(n-m)!) because there are that many ways of arranging m x's and n-m y's to give the product xmyn-m.

The "trinomial" coefficient for xiyjzk would be (i+j+k)!/(i! j! k!)

If you have "m" numbers to the "n" power: (x1+ x2+...+xm)n then the "multi-nomial" coefficient for x1ixjj...xmk would be

(i+ j+ ...+ k)!/(i! j! ... k!).
 
thanks :smile:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top