How Does Quarter Wavelength Impact Wave Reflections?

AI Thread Summary
A quarter wavelength transmission line is equal to one-fourth of the wavelength of the incident wave, which also applies to the reflected wave since they share the same frequency and travel speed in the same medium. When a quarter wavelength line is terminated with an open circuit, it transforms the input to appear as a short circuit at the source, allowing maximum current flow. Conversely, if the line is short-circuited at one end, it appears as an open circuit at the other end, creating a 90-degree phase shift. Impedance mismatches at the quarter wavelength point can cause reflections, with open circuits reflecting in-phase and short circuits reflecting 180 degrees out of phase. This behavior illustrates how quarter wavelength lines can effectively transform circuit characteristics, impacting signal flow and reflections.
hobbs125
Messages
108
Reaction score
0
Reading up on quarter wave transmission lines and I'm confused about the actual length of the line.

Is a quarter wavelength line equal to the length of the incident and reflected wave?

Or is it only equal to the length of the incident wave?
 
Engineering news on Phys.org
hobbs125 said:
Reading up on quarter wave transmission lines and I'm confused about the actual length of the line.

Is a quarter wavelength line equal to the length of the incident and reflected wave?

Or is it only equal to the length of the incident wave?
The incident wave and the reflected wave will have the same frequency.

In the same medium, they will travel at the same speed, so they will have the same wavelength.
 
  • Like
Likes davenn
vk6kro said:
The incident wave and the reflected wave will have the same frequency.

In the same medium, they will travel at the same speed, so they will have the same wavelength.
yup
so --- λ/4 ( in metres) = 300/freq(MHz) /4 x VF ( Velocity Factor) of the transmission line

eg
300/1296 = 0.23m (free space wavelength)
0.23/4 = 0.057 (free space λ/4 wavelength)
0.057 x 0.66 = 0.038m electrical λ/4

The 0.66 VF I used is just a common velocity factor of a number of coaxial cables ( there are many others)

Dave
 
Ok, now I understand that part (thanks btw)..But what about when people say the quarter wavelength transforms an open circuit to a short circuit and vise versa?

Can someone explain that?
What I don't understand, say you have an open circuit, a quarter wavelength transforms it into a short circuit...so does this mean the source only sees a short and maximum current flows through the entire circuit?
 
If you take an electrical 1/4 wave transmission line and short circuit one end, the other end appears as an open circuit when looking into the line. Conversely, if you leave one end open, the other end will appear to be a short circuit.
 
Imagine looking at the start and end of a 1/4 wave line. This corresponds to a phase shift of 90 degrees.
If there is an impedance mismatch at the 1/4 wave point, it will send back a reflection. By the time reflected wave returns, it will have shifted an additional 90 degrees.
Now, if the mismatch is an open, then there will be no place for the energy in the line's inductive component (current) to go, and so it will charge the capacitive part forming a voltage that reflects in-phase.
If the mismatch is a short, the capacitive component of the line will see a short, and the energy will be transferred to the inductive component. This will form a 180 degree out of phase reflection.
By the time the wave from the mismatch travels back up the 1/4 wavelength, the signal will have traveled a total of 180 degrees (down and back). The open mismatch starts in phase, but appears as 180 degrees out of phase. The short will be 180 degrees out of phase but it will have an additional 180 degrees from the delay of the line for a total of 360 degrees. Thus the returned signal appears as the incoming signal in this case.
A short appears an open and an open appears as a short.
 
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...

Similar threads

Replies
7
Views
2K
Replies
2
Views
3K
Replies
11
Views
1K
Replies
2
Views
2K
Replies
14
Views
18K
Replies
14
Views
7K
Back
Top