How Does Rotating the Local Basis Affect Quantum Entanglement of Photons?

fulis
Messages
6
Reaction score
0
A question came up about entanglement and I've only studied very little QM so far, so I went to wikipedia to see if I could become any wiser and they had an example on photon entanglement which was quite straight forward (though the whole page lacks sources =[ ). The example shows that if you have photons going in opposite directions and that are entangled such that they will have the same polarization and their state is a superposition of vertical and horizontal polarization states then they actually don't have a polarization. Kind of a neat result.

Anyway, I figured I'd try to change the example a bit by having the two photons have opposite polarizations instead, so instead of the state:
|1,V>|2,V>+|1,H>|2,H>
I used:
|1,V>|2,H>+|1,H>|2,V>

I did the exact same substitution for the V and H states as they did in the example. I was expecting to get:
|1,45>|2,135>+|1,135>|2,45> since the photons are entangled in such a way that they have opposite polarization, but instead I got (I haven't normalized any of these expressions):
|1,45>|2,45>-|1,135>|2,135>

which is contradictory to the entanglement. The actual calculation is really simple and I did double check it a few times so I'm guessing the problem is something else. It's not exactly the best written wiki entry so I don't trust it to be right :D if someone else could show me how you actually calculate it I'd be grateful
 
Physics news on Phys.org
You'll have to be more precise... |1V>|2H> + |1H>|2V> seems to me like a perfectly formed quantum state of two photons (modulo normalization, of course). Why do you rotate the local basis?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top