How Does Temperature Affect the Frequency Response of Resonating Materials?

  • Thread starter Thread starter Wesleytf
  • Start date Start date
  • Tags Tags
    Resonance
AI Thread Summary
Temperature significantly affects the frequency response of resonating materials, as it alters their physical properties. Higher temperatures can increase the plasticity of materials, potentially impacting their damping characteristics. This change in damping may influence the reinforcement of sound waves, although the exact relationship remains unclear. Additionally, temperature variations affect the length and tension of strings, which directly alters their pitch. Understanding these interactions is crucial for applications in musical instruments and other resonating systems.
Wesleytf
Messages
31
Reaction score
0
So this morning, while prepping for my calc 2 final, I sat at the breakfast table and drank my coffee. After stirring in some sugar, I tapped the spoon on the side of the mug to shake off the remaining drops of coffee. I noticed the pitch of resonating spoon was increasing. I wondered about a couple things--how far off a tuning fork is on a hot day, how much this effects guitar strings when you're really shredding, etc. I spent a minute trying to think of a way to relate temperature to a resonating solid- is it as simple as that the frequency response function is also dependent on the temperature of the material? I looked up the equation and I don't know the right way to get that in there... so drop some knowledge on me fellas!
 
Last edited:
Physics news on Phys.org
I'm almost pretty sure increase in temperature won't cause an increase in vibration. The fact that higher temperature cause the material to have more plastic like properties. Plastic seems to have better dampen properties than brittle materials. But who knows, maybe that dampen happens to cause the wave to reinforce.
 
Temperature will change the length of a string, thus its tension and pitch.
 
I found this frequency response model

http

://

en.wikipedia

(dot) org

/wiki/Image:Frequency_response_example

(dot)

png

(again, sorry about the funky link, but I'm not allowed to post links 'till I get to 15 posts. If anyone wants to patch it up for me, I'd appreciate it)

the only thing I can relate it to that I see here is the stiffness. anyone able to talk more about the change dampening as caused by a temperature change and how that might relate to the frequency?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top