I How Does the Dirac Equation Utilize Component Functions in Its Derivation?

exponent137
Messages
562
Reaction score
35
In
https://quantummechanics.ucsd.edu/ph130a/130_notes/node45.html
after
"Instead of an equation which is second order in the time derivative, we can make a first order equation, like the Schrödinger equation, by extending this equation to four components."

it is evident that the solution is obtained with help of ##a^2-b^2=(a+b)(a-b)##

I cannot follow in this derivation, how rows ##\phi^{(L)}=...## and ##\phi^{(R)}=...## are used. Maybe more steps instead of these two rows will help.

Although I think that Feynman once described this more clearly in his book about QED.

Can someone, please, gives a link or more clearly explains this type of derivation of Dirac equation?
 
Last edited:
Physics news on Phys.org
I'm not sure what your point of confusion is. Do you understand that the following equations are true, by definition of ##\phi^{(R)}## and ##\phi^{(L)}## (plus the fact that ##\phi## obeys the second-order equation)?

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla) \phi^{(R)} = mc \phi^{(L)}##

##(i \hbar \frac{\partial}{\partial t} + i \hbar \sigma \cdot \nabla)\phi^{(L)} = mc \phi^{(R)}##
 
  • Like
Likes exponent137
stevendaryl said:
I'm not sure what your point of confusion is. Do you understand that the following equations are true, by definition of ##\phi^{(R)}## and ##\phi^{(L)}## (plus the fact that ##\phi## obeys the second-order equation)?

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla) \phi^{(R)} = mc \phi^{(L)}##

##(i \hbar \frac{\partial}{\partial t} + i \hbar \sigma \cdot \nabla)\phi^{(L)} = mc \phi^{(R)}##

If I put the second equation in the first one, I obtain:

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla)(i \hbar \frac{\partial}{\partial t}+ i \hbar \sigma \cdot \nabla)\phi^{(L)} = (mc)^2 \phi^{(L)}##

One problem is solved, I think that now I understand this derivation of these two rows, as I mentioned. Thanks.

I think that Feynman used this type of calculation, as you wrote. But I think that he continued I little bit more cleary that in my link?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top