eljose
- 484
- 0
Let be the S function being the action in physics S=S(x,y,z,t) satisfying the equation:
\frac{dS}{dt}+(1/2m)(\nabla{S})^{2}+V(x,y,z,t)=0
where V is the potential is there any solution (exact) to it depending on V?
\frac{dS}{dt}+(1/2m)(\nabla{S})^{2}+V(x,y,z,t)=0
where V is the potential is there any solution (exact) to it depending on V?