How Does the Inequality 2*3^k >= 3 Arise in Mathematical Induction?

beatem
Messages
4
Reaction score
0
Hi,

I'm trying to learn mathematical induction for proving inequalities, but there is just one step I cannot get past: finding another inequality that is added to the inductive hypothesis.

For example, in this problem:

Prove for all positive integers (n >= 1), prove 3^n + 2 >= 3n.

I understand the basis step and in general how to do induction, but for some reason, the example says that that after I get the hypothesis, 3^k + 2 >= 3k (for some arbitrary k), it can generate the inequality 2*3^k >= 3 for all k >= 1. Where does this come from? I can follow how it adds this inequality to the hypothesis, but what is this, and how would I go about getting this?

This isn't just a generic problem by the way: I've looked at many examples, but I can't figure out what this is when dealing with inequalities and induction.
 
Mathematics news on Phys.org
For your example I would first show: 3n ≥ 3n which is easier.
You said you can do the basic step. So let's move on to the induction.

To do the induction we suppose n, then we prove if n is true, n+1 is true.
So first suppose: 3n ≥ 3n. Then our goal is to show: 3n+1≥3(n+1)

To do that I would prove the following:
3n ≥ 3n ⇒ 3+3n ≥ 3(n+1)
Then i would prove: 3n+1≥3+3n for n>1
Putting these together: 3n+1≥3+3n≥3(n+1) This step shows our goal!
Thus by the principle of induction: 3n ≥ 3n for Natural n

Then you know: 3n ≥ 3n ⇒3n + 2 ≥ 3n or 3n ≥ 3n ⇒3*3*3n =3n+2 ≥ 3n from the properties of inequalities. It's hard to tell which of these you were trying to prove how you wrote it.
 
Last edited:
Thanks for the reply!

Sorry: I meant (3^n)+2

So is there no need for the extra inequality of 2*3^n >= 3? Or am I just missing something?
 
No need for the other inequality, which i think you typed incorrectly.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top