How Does the Mathematical Function of Time Affect River Depth?

  • Thread starter Thread starter bagpiper
  • Start date Start date
  • Tags Tags
    Maximum River
bagpiper
Messages
2
Reaction score
0
D = 9 + 3cos[pi(t)/14]
where D meters is the depth of the water above the river bed at time t hours after 12 noon on 7 March 2005, Monday. This means that the depth of water only depends on time.
a) Write down the minimum and maximum depths of the river
b) Find the day and time when the water first reaches its minimum.

please help me with these questions! thanks!
 
Mathematics news on Phys.org
You know that:
-1 \leq \cos \alpha \leq 1
So when the D is minimum is when \cos \frac{\pi t}{14} is minimum and vice versa, when the D is maximum is when \cos \frac{\pi t}{14} is maximum.
Can you go from here?
Viet Dao,
 
Yup. i got there. So minimum is 6m, maximum is 12m. But i don't know how to manipulate it formula to solve the second part.
 
Why is pi written as a function of time? Isn't pi a constant? I'll assume it's a typographic error or it means pi * t, i.e. multiplication.

1. Let's say you have D = f(t). If you set f'(t) = 0 that'll give you the extrema (minima and maxima) solutions, say tmin and tmax. Then take each of these solutions and look at f''(t) at this point. If f''(t) < 0 then it's a maximum; if f''(t) > 0 then it's a minimum. If f''(t) = 0 then it's an inflection point, I guess.
2. Now having found all your minima, calculate the time difference between the first such minima occurring (assuming there are more than one, if there is only one minimum then just take its time of occurance, tmin) and "today" (7 March 2005): tmin - t7Mar05.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top