N00813
- 31
- 0
Homework Statement
Given that \hat{p} = -i\hbar (\frac{\partial}{\partial r} + \frac{1}{r}), show that \hat{p}^2 = -\frac{\hbar^2}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial}{\partial r})
Homework Equations
Above
The Attempt at a Solution
I tried \hat{p}\hat{p} = -\hbar^2((\frac{\partial}{\partial r})^2 + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial}{\partial r}\frac{1}{r} +\frac{1}{r^2}).
This gave me -\hbar^2((\frac{\partial}{\partial r})^2 + \frac{1}{r} \frac{\partial}{\partial r} ) instead of the 2 / r factor I needed.
Last edited: