parton
- 79
- 1
Hello!
I should prove:
\delta'(\lambda x) = \dfrac{1}{\lambda \vert \lambda \vert} \delta(x),
where lambda is just a constant.
If we make use of the scaling property and the definition of the distributional derivative, we find:
\left( \delta'(\lambda x), f \right) = \dfrac{1}{\vert \lambda \vert} \left( \delta', f(x/\lambda) \right) = \dfrac{(-1)}{\lambda \vert \lambda \vert} \left( \delta, f'(x/\lambda) \right) = \dfrac{1}{\lambda \vert \lambda \vert} \left( \delta', f(x/\lambda) \right)
Because this is true for all testfunctions f, we have shown the identity.
Now I think that my last step is wrong.
Because of
f'(x/\lambda) = \left( \dfrac{\partial f}{\partial x} \right) (x/\lambda) \neq \dfrac{\partial}{\partial x} \left( f(x/\lambda) \right) = \dfrac{1}{\lambda} f'(x/\lambda)
there should be an additional factor of lambda if I 'shift' the derivative back to the delta distribution.
You can also see this by (formally) writing the last step:
\dfrac{(-1)}{\lambda \vert \lambda \vert} \left( \delta, f'(x/\lambda) \right) = \dfrac{(-1)}{\lambda \vert \lambda \vert} \int_{-\infty}^{\infty} \delta(x) f'(x/\lambda) \, \mathrm{d}x = \dfrac{1}{\vert \lambda \vert} \int_{-\infty}^{\infty} \delta'(x) f(x/\lambda) \, \mathrm{d} x = \dfrac{1}{\vert \lambda \vert} \left( \delta', f(x/\lambda) \right),
where I used integration by parts.
So something is really wrong here.
Maybe someone could help me.
I should prove:
\delta'(\lambda x) = \dfrac{1}{\lambda \vert \lambda \vert} \delta(x),
where lambda is just a constant.
If we make use of the scaling property and the definition of the distributional derivative, we find:
\left( \delta'(\lambda x), f \right) = \dfrac{1}{\vert \lambda \vert} \left( \delta', f(x/\lambda) \right) = \dfrac{(-1)}{\lambda \vert \lambda \vert} \left( \delta, f'(x/\lambda) \right) = \dfrac{1}{\lambda \vert \lambda \vert} \left( \delta', f(x/\lambda) \right)
Because this is true for all testfunctions f, we have shown the identity.
Now I think that my last step is wrong.
Because of
f'(x/\lambda) = \left( \dfrac{\partial f}{\partial x} \right) (x/\lambda) \neq \dfrac{\partial}{\partial x} \left( f(x/\lambda) \right) = \dfrac{1}{\lambda} f'(x/\lambda)
there should be an additional factor of lambda if I 'shift' the derivative back to the delta distribution.
You can also see this by (formally) writing the last step:
\dfrac{(-1)}{\lambda \vert \lambda \vert} \left( \delta, f'(x/\lambda) \right) = \dfrac{(-1)}{\lambda \vert \lambda \vert} \int_{-\infty}^{\infty} \delta(x) f'(x/\lambda) \, \mathrm{d}x = \dfrac{1}{\vert \lambda \vert} \int_{-\infty}^{\infty} \delta'(x) f(x/\lambda) \, \mathrm{d} x = \dfrac{1}{\vert \lambda \vert} \left( \delta', f(x/\lambda) \right),
where I used integration by parts.
So something is really wrong here.
Maybe someone could help me.