CNX
- 26
- 0
Homework Statement
Consider a particle of mass m and charge q that moves in an E-field \vec{E}=\frac{E_0}{r}\hat{r} and a uniform magnetic field \vec{B}=B_0\hat{k}. Find the scalar potential and show the vector potential is given by \vec{A}=\frac{1}{2}B_0 r \hat{\theta}. Then obtain the Lagrange equations of motion and identify the conserved quantities
Homework Equations
Lagrange equations
The Attempt at a Solution
Using cylindrical coords,
L=T-V=\frac{1}{2}m \left ( \dot{r}^2+\dot{\theta}^2+\dot{z}^2 \right) - e\phi + e\vec{v} \cdot \vec{A}
L = \frac{1}{2}m \left ( \dot{r}^2+\dot{\theta}^2+\dot{z}^2 \right) - eE_0\ln(r) + \frac{1}{2}e\dot{\theta}B_0r
Using the Lagrange equation,
0 = m\ddot{r} + eE_0\frac{1}{r} - \frac{1}{2}e\dot{\theta}B_0
0=m\ddot{\theta}
0=m\ddot{z}[/itex]<br /> <br /> Correct?