jaketodd said:
Is it true that if an astronaut, who has been traveling near the speed of light relative to the Earth for a long time, comes back to earth, time will have elapsed slower for him than for us? Doesn't that necessitate our clocks moving faster in his point of view while he was moving faster? How else would we be older and him younger?
If we insist on defining his "point of view" at any event on his world line (the curve in spacetime that represents his motion) as the co-moving inertial frame at that point, then he would "see" the clocks on Earth tick ahead with an enormous rate as he slows down to a stop (relative to Earth) and starts speeding up in the opposite direction. (I don't mean that this this is what he would see through a telescope. I'm talking about how he would describe what happens on Earth if he records what he sees through the telescope and then compensates for light travel time).
This is a spacetime diagram I made for another one of these threads a couple of years ago, which shows the Earth twin's point of view, and explains how the other twin would describe things some of the events on his world line (when we use co-moving inertial frames to define the "point of view").
[PLAIN]http://web.comhem.se/~u87325397/Twins.PNG
Fredrik said:
I'm calling the twin on Earth "A" and the twin in the rocket "B".
Blue lines: Events that are simultaneous in the rocket's frame when it's moving away from Earth.
Red lines: Events that are simultaneous in the rocket's frame when it's moving back towards Earth.
Cyan (light blue) lines: Events that are simultaneous in Earth's frame.
Dotted lines: World lines of light rays.
Vertical line in the upper half: The world line of the position (in Earth's frame) where the rocket turns around.
Green curves in the lower half: Curves of constant -t^2+x^2. Points on the two world lines that touch the same green curve have experienced the same time since the rocket left Earth.
Green curves in the upper half: Curves of constant -(t-20)^2+(x-16)^2. Points on the two world lines that touch the same green curve have experienced the same time since the rocket turned around.
It actually makes more sense to define his "point of view" as the coordinate system constructed using the synchronization procedure I mentioned in the thread I linked to. (This procedure only produces inertial frames when it's applied to an object that never accelerates (and never rotates)). See
this article for more about this definitio of "point of view", and how to use it to resolve the twin paradox.
If we don't care about "points of view" and only want to know how SR predicts that the astronaut twin will be younger, the answer is that it follows immediately from an axiom of the theory: A clock measures the
proper time of the curve in spacetime that represents its motion.
jaketodd said:
So the astronaut thing you hear so many times is a myth?
That's not what he said at all.