How is the distance to the x-axis related to the roots of quadratic equations?

lmamaths
Messages
6
Reaction score
0
Hi,

How is the roots of a quadratic equation related
to the distance from the x-axis at where
the root is -
where ...
ax^2+bx+c=0
and ...
x = (-b +- SQRT(b^2-4ac))/2

Can someone help me to establish where this
distance relationship to the x-axis and the root
come from?

Thx!
LMA
 
Mathematics news on Phys.org
Am I understanding this correctly? Are you asking how the roots of a quadratic equation relate to "the distance from the x-axis at where the root is"? A root of an equation, by definition, is a point where y= 0. if y=0, then the distance from the x-axis is 0: the graph crosses the axis there!
 
Hi,

Maybe I mean't lowest part of the curve to the x-axis, consider:
y=2x^2-3x+2

Thx!
Leo
 
lmamaths said:
Hi,

Maybe I mean't lowest part of the curve to the x-axis, consider:
y=2x^2-3x+2

Thx!
Leo

I'm not really sure what you're asking Leo. That function has no real roots. If you extend the domain to complex numbers then the function is still zero (both real and imaginary parts) at each of its complex zeros. Real or complex the function is still zero at it's zero's.
 
lmamaths said:
Hi,

Maybe I mean't lowest part of the curve to the x-axis, consider:
y=2x^2-3x+2

Thx!
Leo


Ah- distance from the vertex to the x-axis.

Given y= ax2+ bx+ c= 0, consider solving by completing the square: write this as a(x2+ (b/a)x+ b2/4a2)+ c- 4b2/a= a(x- (b/2a))2+ c- 4b2/a.

The distance from the x-axis to the vertex is given when x = b/2a and is
c- 4b2/a. do you see how that is connected to the value of x that satisfies the equation?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top