ppedro
- 22
- 0
How can I prove that, for N\gg n
\frac{N!}{(N-n)!}\approx N^{n}
I've tried doing
\frac{N!}{(N-n)!}=\exp\left(\ln\frac{N!}{(N-n)!}\right)=\exp\left(\ln N!-\ln\left(N-n\right)!\right)
\underset{stirling}{\approx}\exp\left(N\ln N-N-\left(N-n\right)\ln\left(N-n\right)+N-n\right)
=N^{N}+\left(N-n\right)^{n-N}+\exp-n
But it doesn't look like I'm getting there
\frac{N!}{(N-n)!}\approx N^{n}
I've tried doing
\frac{N!}{(N-n)!}=\exp\left(\ln\frac{N!}{(N-n)!}\right)=\exp\left(\ln N!-\ln\left(N-n\right)!\right)
\underset{stirling}{\approx}\exp\left(N\ln N-N-\left(N-n\right)\ln\left(N-n\right)+N-n\right)
=N^{N}+\left(N-n\right)^{n-N}+\exp-n
But it doesn't look like I'm getting there