Cephal
- 3
- 0
Hello everybody,
I have proved that:
$$\displaystyle \lim_{n\to+\infty} n\int_{0}^1 x^ng(x)\mathrm{d}x=g(1)$$
with $$g \in\mathcal{C}^0(\left[0,1\right],\mathbb{R})$$.But I don't know how to prove this:
$$\displaystyle \int_0^1 x^n f(x)\mathrm{d}x=\dfrac{f(1)}{n}-\dfrac{f(1)+f'(1)}{n^2}+o_{+\infty}(\dfrac{1}{n^2})$$
with $$f\in\mathcal{C}^1(\left[0,1\right],\mathbb{R})$$.
(Tongueout)
Thank you for your answers.
I have proved that:
$$\displaystyle \lim_{n\to+\infty} n\int_{0}^1 x^ng(x)\mathrm{d}x=g(1)$$
with $$g \in\mathcal{C}^0(\left[0,1\right],\mathbb{R})$$.But I don't know how to prove this:
$$\displaystyle \int_0^1 x^n f(x)\mathrm{d}x=\dfrac{f(1)}{n}-\dfrac{f(1)+f'(1)}{n^2}+o_{+\infty}(\dfrac{1}{n^2})$$
with $$f\in\mathcal{C}^1(\left[0,1\right],\mathbb{R})$$.
(Tongueout)
Thank you for your answers.
Last edited: