matticus said:
there are 8 choices, and 5 slots to put them in. that should be 8^5 if i remember from discrete math. 8^5 is a lot larger than 790 though.
Er, yeah, because the order of the elements doesn't matter. You're just choosing, not permuting. If you order two medium drinks, two curly fries and a roast beef sandwich, that's the same as ordering a roast beef sandwich, an order of curly fries, a medium drink, another order of curly fries, and a medium drink. You've put in the same food order, you just haven't requested the items in the same sequence. The two examples are not distinct combinations of five items.
What Cristo said, if you want to see the mathematics.
By the way, here in Canada, you still pay $6, but you only get to choose four items! I don't understand why that is. The menu says 330 possible combinations, which leads me to believe that there are still 8 items to choose from (if you use the formula provided in the Wikipedia link, it works out exactly).
That leads me to my next question. Does anyone know how to "derive" or at least intuitively explain this formula for combination with repetition? Because, all three of the other combinatorial formulas make perfect sense to me (and if you don't believe me, I'd be happy to explain why I think they make sense intuitively). But combination with repetitition...looking at the formula, I can't seem to figure out how one might arrive at it.