How Many Ways to Arrange Five Colored Balls with Specific Conditions?

  • Thread starter Thread starter erogard
  • Start date Start date
  • Tags Tags
    Permutations
erogard
Messages
60
Reaction score
0
Hi, here's the question, I just need someone to confirm that I'm doing it right (been a while since my last stat class):

Let's say I have 30 balls all of different colors. I want to know in how many different ways I can align 5 balls picked at random (thus ordering matters). Note that one must be blue, one red and one yellow.

So let's start with the blue one. I have 5 different ways to arrange it (either place it first in line, or second, or third etc.). Then let's say I'm looking a the red one: I have 4 ways left to arrange it. Finally I have 3 slots left for the yellow one. Now for the remaining 2 balls, I still have 27 balls to choose from.

Would the answer be 5*4*3*(27 Permute 2)?

Thanks.
 
Physics news on Phys.org
Hey erogard.

That looks right to me.

Also if you want to test things like this, what I recommend you do is simulate the stochastic process in a computer package like R and then look at the probability of the event happening over say 10,000 or 100,000 iterations (which is quick with modern day computers).

This is always a good way for you to independently verify your own work.
 
How many balls are blue, red, and yellow within the 30 balls?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top