How many ways to colour 20 triangular faces with 5 colours, each used 4 times?

  • Thread starter Thread starter BrownianMan
  • Start date Start date
  • Tags Tags
    Combinatorics
BrownianMan
Messages
133
Reaction score
0
So I found a formula for the number of ways of coloring a shape with 20 triangular faces, 30 edges, and 12 vertices: (1/60)*(k^20+15*k^10+20*k^8+24*k^4).

Now I need to find the # of ways of coloring the faces with exactly 5 colors each with each color used exactly 4 times. I know how to find the # of ways of coloring the faces with exactly 5 colors (just plug k=5 in the formula) But the part about "each color used exactly 4 times" is throwing me off. How do I do this?
 
Physics news on Phys.org
Anyone?
 
How did you arrive at that formula? Maybe it can be adjusted to your new colouring problem.

Meanwhile, if you see all of the 20 faces as different (you count rotations of your object as separate colourings), you have
$$
\left( \begin{array}c 20 \\ 4 ~~ 4 ~~ 4 ~~ 4 ~~ 4 \end{array}\right) = \frac{20!}{4!\cdot4!\cdot4!\cdot4!\cdot4!}
$$
possibilities. This is similar to the number of ways you can choose ##k## objects from a set of ##n## objects, i.e. ##\binom nk = \frac{n!}{k!\cdot(n-k)!}##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top