How to achieve higher electrical power in a smaller space with same current

AI Thread Summary
To achieve higher electrical power in a smaller space while maintaining the same current, optimal motor configurations focus on maximizing mechanical power, angular acceleration, and torque relative to volume and mass. Key parameters must be increased at a faster rate than others, necessitating a careful balance between resistance, voltage, and torque characteristics. The relationship between mechanical power and electrical power indicates that power can be enhanced while simultaneously reducing volume and mass. Effective design must also consider heat management, as excess heat generated from increased power output needs to be dissipated efficiently. Ultimately, engineering advancements will determine the feasibility of creating compact, powerful, and durable motors.
kmarinas86
Messages
974
Reaction score
1
Optimal motor configuation for higher electrical power in a smaller space

Favored (because these qualities allow the machine do quick and nimble things for a longer time)
mechanical power
angular acceleration
torque/volume
torque/mass
torque
longevity

Neutral
resistance
voltage
loops, wire
length, wire
charge capacity
area per loop
diameter, wire

Disfavored (because these qualities prevent the machine from do quick and nimble things for a long duration)
current
mass
volume

The chart below consists of the solutions by a Microsoft Excel add-in. What the chart below shows is that in order to follow the criteria above, you have to increase certain parameters at a faster rate than others, while decreasing others in the process. The rate is r, where x=(1+r).

x^9: resistance
x^8: voltage
x^7: mechanical power
x^6: angular acceleration
x^4: torque/volume; wire loops; torque/mass
x^3: wire length
x^1: torque, longevity
x^0: charge capacity
x^-1: current
x^-2: area per loop
x^-3: wire diameter; mass; volume

Consider x=2. We would have:

512 times the resistance
256 times the voltage
128 times the mechanical power
64 times the angular acceleration
16 times the torque/volume; wire loops; torque/mass
8 times the wire length
2 times the torque, longevity
The same charge capacity
50% of the current
25% of the area per loop
12.5% of the wire diameter; mass; volume

The above suggests that while the possible mechanical power is limited by electrical power, its possible have negative relationship between power and volume, power and mass, power per current - SIMULTANEOUSLY. It's only a matter of engineering as to how small, and powerful, and how long lasting the motor can be.
 

Attachments

Last edited:
Engineering news on Phys.org
I don't see an attachment. This also looks like coursework, but it's complex enough that I'll leave it here for now instead of moving it to homework help.
 
In answer to your question, it all boils down to heat. You can put as much power wherever you want but the excess heat has to be removed. Write the general physics forum for more information.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top