How to achieve higher electrical power in a smaller space with same current

AI Thread Summary
To achieve higher electrical power in a smaller space while maintaining the same current, optimal motor configurations focus on maximizing mechanical power, angular acceleration, and torque relative to volume and mass. Key parameters must be increased at a faster rate than others, necessitating a careful balance between resistance, voltage, and torque characteristics. The relationship between mechanical power and electrical power indicates that power can be enhanced while simultaneously reducing volume and mass. Effective design must also consider heat management, as excess heat generated from increased power output needs to be dissipated efficiently. Ultimately, engineering advancements will determine the feasibility of creating compact, powerful, and durable motors.
kmarinas86
Messages
974
Reaction score
1
Optimal motor configuation for higher electrical power in a smaller space

Favored (because these qualities allow the machine do quick and nimble things for a longer time)
mechanical power
angular acceleration
torque/volume
torque/mass
torque
longevity

Neutral
resistance
voltage
loops, wire
length, wire
charge capacity
area per loop
diameter, wire

Disfavored (because these qualities prevent the machine from do quick and nimble things for a long duration)
current
mass
volume

The chart below consists of the solutions by a Microsoft Excel add-in. What the chart below shows is that in order to follow the criteria above, you have to increase certain parameters at a faster rate than others, while decreasing others in the process. The rate is r, where x=(1+r).

x^9: resistance
x^8: voltage
x^7: mechanical power
x^6: angular acceleration
x^4: torque/volume; wire loops; torque/mass
x^3: wire length
x^1: torque, longevity
x^0: charge capacity
x^-1: current
x^-2: area per loop
x^-3: wire diameter; mass; volume

Consider x=2. We would have:

512 times the resistance
256 times the voltage
128 times the mechanical power
64 times the angular acceleration
16 times the torque/volume; wire loops; torque/mass
8 times the wire length
2 times the torque, longevity
The same charge capacity
50% of the current
25% of the area per loop
12.5% of the wire diameter; mass; volume

The above suggests that while the possible mechanical power is limited by electrical power, its possible have negative relationship between power and volume, power and mass, power per current - SIMULTANEOUSLY. It's only a matter of engineering as to how small, and powerful, and how long lasting the motor can be.
 

Attachments

Last edited:
Engineering news on Phys.org
I don't see an attachment. This also looks like coursework, but it's complex enough that I'll leave it here for now instead of moving it to homework help.
 
In answer to your question, it all boils down to heat. You can put as much power wherever you want but the excess heat has to be removed. Write the general physics forum for more information.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top