How to Approximate Potential Energy for a Linear Harmonic Oscillator?

neelakash
Messages
491
Reaction score
1

Homework Statement



Find the linear harmonic oscillator approximation for potential energy function:

\ V=\frac{a}{x^2}+\ b\ x^2

Homework Equations



The Attempt at a Solution



The 2nd term will be present in the expression of V(approx).But what about the first term. Should we make it {1+(x-1)} and expand binomially?But that would involve two points of eqlbm---one is 0 and the other is 1...

Can anyone please help?
 
Last edited:
Physics news on Phys.org
You have to find the minimum first. If both a,b>0, then the minima occur at x= +-(a/b)^1/4. Take the +ve value, say. Expand the function as a Taylor series around that point and retain up to the x^2 term.

Note that the function is not defined at x=0, and approaches infinity as x tends to zero. Why were you thinking of x=0 as an equilibrium point?
 
Why were you thinking of x=0 as an equilibrium point?

Yes,I really made a mistake in undestanding the problem.Now, I can do it.Thank you very much.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top