How to calculate energy density of mainspring?

Click For Summary
SUMMARY

The discussion focuses on calculating the energy density of mainsprings and motor-springs, specifically using materials like steel and acrylic. The user seeks guidance on applying Young's Modulus and Ultimate Tensile Strength to determine the energy density and breaking points of various materials. A concrete example is provided using an acrylic ruler, with specific dimensions and material properties referenced. The user expresses difficulty in finding resources specifically related to mainsprings, indicating a gap in available literature.

PREREQUISITES
  • Understanding of Young's Modulus and Ultimate Tensile Strength
  • Basic principles of mechanical engineering related to spring mechanics
  • Familiarity with material properties and their measurement
  • Knowledge of energy density calculations in mechanical systems
NEXT STEPS
  • Research the calculation of energy density for different spring types, focusing on mainsprings
  • Explore methods for measuring Young's Modulus and Ultimate Tensile Strength in materials
  • Investigate literature specifically addressing mainspring design and analysis
  • Learn about composite materials and their properties relevant to spring applications
USEFUL FOR

Mechanical engineers, materials scientists, and hobbyists interested in spring design and energy storage applications, particularly those focusing on mainsprings and motor-springs.

lightspd
Messages
5
Reaction score
0
Hi,

How do I calculate the energy density of either a main-spring (like in a clock) or a motor-spring?
Can someone show me values put into the correct formula for something like steel?

I did find some material properties like this: http://www.engineeringtoolbox.com/young-modulus-d_417.html

The motor-spring I am interested in is a type like this: http://www.sdp-si.com/Gateway/D220-T183.htm


Secondly, I would like to experiment with various materials (composites especially). If I make a plank of this material, how can I measure its properties to be able to put it into the correct formula for energy density of such a spring (if made into a spring)? I would have to take into account the breaking-point of the material of course (i.e. I bend the plank and at some point it either snaps or buckles).

I did study mech. engineering for a coupple of years but it is 20 years ago and I am rusty ;-)
I have googled and read a lot but am still stuck. Most stuff only relates to compression-springs but I need to work out spring constant of basically a beam (?) and not sure of to work out the breaking point (of the clockspring) when I know that a certain material will snap when it is deflected a certain amount.



Thanks a lot.

Regards
 
Physics news on Phys.org
A concrete example I would very much like to see is something like this:

Take an acrylic ruler. it is 30 cm long, 3 cm wide and 2mm thick. It weighs 20grams (just estimated for this example).
Acrylic has Youngs Modulus of 3.2 GPa and ultimate Tensile Strength of 70 Mpa (according to the page I posted ealier).

If I took this material and used 500cm of it and turned it into a mainspring (or motor-spring), then:

a) What is the energy density of the spring?

b) If I didn't have Youngs Modulus and Ultimate Tensile Strength, how could I work these out (and any other values that I might need)?Thanks and regards
 
Bump!

Sorry I have cross-posted this in the coursework forum, many reads but no answers :-(
Is no one able to help me with this?
When I google, I only find articles related to compression springs. Why is it so difficult to find stuff on main-springs?

Can someone recommend a good book on the subject? Not interrested at all in compression-springs, only main-springs and tensator springs and the like.

Thanks.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K