How to Calculate the Cyclotron Magnetic Dipole Moment in a Penning Trap?

  • Thread starter Thread starter Izzyg
  • Start date Start date
  • Tags Tags
    Bohr
Izzyg
Messages
4
Reaction score
1
Hello, this is a question regarding Penning trap design.

I need to calculate the magnetic dipole moment of the cyclotron motion, as a function of the cyclotron quantum number. The result needs to be given in terms of Bohr's magnetron.

The magnetic dipole moment is defined as current x area enclosed by current.
 
Physics news on Phys.org
Izzyg said:
I need to calculate the magnetic dipole moment of the cyclotron motion, as a function of the cyclotron quantum number. The result needs to be given in terms of Bohr's magnetron.
Just curious. Is this a homework question?
 
Indeed it is. So far I have found
{\displaystyle {\boldsymbol {\mu }}={\frac {-e}{2m_{\text{e}}}}\,\mathbf {L} \,,}
from https://en.wikipedia.org/wiki/Electron_magnetic_moment, but I can't see current x area enclosed there.

Cyclotron quantum number must be
{\displaystyle E_{n}=\hbar \omega _{\rm {c}}\left(n+{\frac {1}{2}}\right)+{\frac {p_{z}^{2}}{2m}},\quad n\geq 0~.}
https://en.wikipedia.org/wiki/Landau_levels
 
dlgoff said:
Is this a homework question?
Izzyg said:
Indeed it is.
Thread moved to the advanced physics homework forum.
 
Izzyg said:
So far I have found
{\displaystyle {\boldsymbol {\mu }}={\frac {-e}{2m_{\text{e}}}}\,\mathbf {L} \,,}
from https://en.wikipedia.org/wiki/Electron_magnetic_moment, but I can't see current x area enclosed there

Consider a particle of mass ##m## and charge ##q## moving in uniform circular motion of radius ##r## and speed ##v##.

Can you express the angular momentum ##L## in terms of ##m##, ##r## and ##v##?

Can you express the current ##I## due to the motion of the charge in terms of ##q##, ##r## and ##v##?
 
TSny, thank you for your message, really helpful. I think I've now found what I need: μ = (-e/2m)L = IA
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top