How to compute Hydrogen Inner Products <n,l+1,m+1|n,l-1,m+1>?

  • Thread starter Thread starter maverick280857
  • Start date Start date
  • Tags Tags
    Hydrogen
maverick280857
Messages
1,774
Reaction score
5
Hi,

I want to compute inner products of the form

\langle n,l+1,m+1|n,l-1|m+1\rangle

where |n,l,m\rangle are hydrogen atom eigenfunctions.

Whats the best way to do this, without writing them in the position space representation (i.e. evaluating volume integrals)? Are there any known identities to do this calculation?

Thanks in advance,
Vivek.
 
Last edited:
Physics news on Phys.org
check that inner product once more, there is a misprint.

<n,L1,m1|n,L2,m2> = 0.

Distinct eigenfunctions are always orthogonal.
 
Yeah, I forget where :frown:. I had to determine coefficients of a linear combination containing these two kets. And to find them, I started taking inner products. Maybe I made some mistake.

Thanks for your reply, malawi_glenn. I'll post back with the right terms...I think I should sleep more :-|
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top