MHB How to define this linear transformation

Granger
Messages
165
Reaction score
7
> Admit that $V$ is a linear space about $\mathbb{R}$ and that $U$ and $W$ are subspaces of $V$. Suppose that $S: U \rightarrow Y$ and $T: W \rightarrow Y$ are two linear transformations that satisfy the property:

> $(\forall x \in U \cap W)$ $S(x)=T(x)$

> Define a linear transformation $F$: $ U+W \rightarrow Y$ that matches with S for values in U and matches with T with values in W.

My thought is to choose the linear transformation $F=S+T$ because it will be the union of both transformation, right? But now I know this is incorrect...

Can someone give an hint on how to approach the problem (without using matrices...)?

I know that the function might be equal to S for the vectors that belong to U and equal to T for vector that belong to V... But how do I get there and write a linear transformation?
 
Last edited:
Physics news on Phys.org
GrangerObliviat said:
> Admit that $V$ is a linear space about $\mathbb{R}$ and that $U$ and $W$ are subspaces of $V$. Suppose that $S: U \rightarrow Y$ and $T: W \rightarrow Y$ are two linear transformations that satisfy the property:

> $(\forall x \in U \cap W)$ $S(x)=T(x)$

> Define a linear transformation $F$: $ U+W \rightarrow Y$ that matches with S for values in U and matches with T with values in W.

My thought is to choose the linear transformation $F=S+T$ because it will be the union of both transformation, right? But now I know this is incorrect...

Can someone give an hint on how to approach the problem (without using matrices...)?

I know that the function might be equal to S for the vectors that belong to U and equal to T for vector that belong to V... But how do I get there and write a linear transformation?
A vector $x$ in $U+W$ has to be of the form $x = u+w$, where $u\in U$ and $w\in W$. The natural way to define $F$ is $F(x) = S(u) + T(w)$. The thing you have to be careful about is to show that this $F$ is well-defined. In other words, suppose that $x$ can be expressed as an element of $U+W$ in more than one way, say $x = u_1 + w_1$ and also $x = u_2 + w_2$. In order for the definition of $F$ to make sense, it should be true that both expressions for $x$ give rise to the same value for $F(x)$. So you have to show that $S(u_1) + T(w_1) = S(u_2) + T(w_2).$ Can you do that?
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top