How to Derive the Expression for \(\delta W = -E dP\)?

  • Thread starter Thread starter appmathstudent
  • Start date Start date
appmathstudent
Messages
6
Reaction score
2
Homework Statement
This is exercise 3-12 form Sears and Salinger Thermodynamics : Show that $$\delta W = -E dP$$ by calculating the work necessary to charge a parallel plate capacitor containing a dielectric.
Relevant Equations
$$W = U = \frac{q^2}{2C}$$
$$ C = \frac{\kappa \epsilon_0 A}{d}$$
$$P = qd $$ (dipole moment of slab)
$$ E = \frac{q}{\epsilon_0 \kappa A}$$
$$W = U = \frac{q^2}{2C} =\frac{q q d}{2 \kappa \epsilon_0 A} = \frac{E P}{2}$$

Then , since E is constant we have that :

$$\delta W = \frac{dW}{dP} dP = \frac{E}{2} dP$$.

My question is how can I make this 2 on the denominator disappear in order to obtain the required expression ?

ps : In the book (Chapter 3 page 67) he mentions that $$\delta W$$ is the work when $$E$$ is changed in a dielectric slab.
 
Last edited:
Physics news on Phys.org
dP=d(qD)=(dq) D+ q (dD)
where D is distance between the capacitor plates introduced to distinguish it with differential d.
Which is your case changing charge or changing distance or the both ?
 
Last edited:
I think q is changing, since the work is done to change E.
 

Attachments

  • 20211002_125815.jpg
    20211002_125815.jpg
    30 KB · Views: 160
appmathstudent said:
I think q is changing, since the work is done to change E.
So you are saying E is not constant during the charging process.
 
appmathstudent said:
I think q is changing, since the work is done to change E.
q is changing, d is constant so
dP=d(dq)
\frac{dW}{dP}=\frac{1}{d}\frac{dW}{dq}
Try it.
 
  • Like
Likes appmathstudent
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top