I How to derive the Fourier transform of a comb function

arcTomato
Messages
104
Reaction score
27
TL;DR Summary
Fourier transform
Dear all.
I'm learning about the discrete Fourier transform.

##I(\nu) \equiv \int_{-\infty}^{\infty} i(t) e^{2 \pi \nu i t} d t=\frac{N}{T} \sum_{\ell=-\infty}^{\infty} \delta\left(\nu-\ell \frac{N}{T}\right)##

this ##i(t)## is comb function
##i(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-\frac{k T}{N}\right)##.

I would like to see how to derive ##I(ν)##.(Especially the part about transformation to ##lN/T from kT/N)
If you can teach me, please.
Thank you.
 
Last edited:
Physics news on Phys.org
Hi.
I(\nu)=\sum^\infty_{k=-\infty} \int^\infty_{-\infty}\delta(t-\frac{kT}{N})e^{2\pi\nu it}dt=\sum^\infty_{k=-\infty}e^{2\pi\nu i kT/N}=\sum^\infty_{l=-\infty}\delta(\nu T/N-l)=\frac{N}{T}\sum^\infty_{l=-\infty}\delta(\nu -\frac{lN}{T})
 
Thanks for reply @mitochan.
I cannnot understand what is going on this part

mitochan said:
=\sum^\infty_{k=-\infty}e^{2\pi\nu i kT/N}=\sum^\infty_{l=-\infty}\delta(\nu T/N-l)

Could you teach me about this detail??
 
RHS says ##\nu T/N## must be an integer. If not LHS =0 due to summation of various phase numbers of magnitude 1. Sumamtion in RHS says any integer is OK.
 
ok thank you.
I think I got it ;>
 
Back
Top