A How to derive the sampling distribution of some statistics

Ad VanderVen
Messages
169
Reaction score
13
TL;DR Summary
Given a geometric Erlang distribution, how can I derive the sampling distribution of the coefficient of variation and the skewness for a sample of size $n$.
Assume that ##T## has an Erlang distribution:
$$\displaystyle f \left(t \, | \, k \right)=\frac{\lambda ^{k }~t ^{k -1}~e^{-\lambda ~t }}{\left(k -1\right)!}$$
and ##K## has a geometric distribution
$$\displaystyle P \left( K=k \right) \, = \, \left( 1-p \right) ^{k-1}p$$
Then the compound distribution has the following form.
$$\displaystyle g \left(t \right)= \sum _{k=1}^{\infty} f \left(t \, | \, k \right)~P \left(K =k \right)=\frac{\lambda ~p }{e^{\lambda ~t ~p }}$$
with expectation:
$$\displaystyle \mu_{{1}}\, = \,{\frac {1}{\lambda\,p}}$$
variance:
$$\displaystyle \mu_{{2}}\, = \,{\frac {1}{{\lambda}^{2}{p}^{2}}}$$
and third central moment:
$$\displaystyle \mu_{{3}}\, = \, {\frac {2}{{\lambda}^{3}{p}^{3}}}$$
The coefficient of variation ##c_v## is given by:
$$\displaystyle {\it c_v}\, = \,{\frac { \sqrt{\mu_{{2}}}}{\mu_{{1}}}}=1$$
and the skewness ##\tilde{\mu}_3## by:
$$\displaystyle {\it \tilde{\mu}_3}\, = \,{\frac {\mu_{{3}}}{{\mu_{{2}}}^{3/2}}}=2$$
Is it possible to derive a formula for the sampling distribution of the coefficient of variation and the skewness with a sample size ##n##?
 
Last edited:
Physics news on Phys.org
mathman said:

I am now aware that ##g(t)## is in fact an exponential distribution with rate parameter ##\lambda \, p##. But the Wikipedia site on the exponential distribution makes no mention of sampling distributions.
 
Section on statistical parameters? I am not sure what you want.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top