Graduate How to derive the sampling distribution of some statistics

Click For Summary
The discussion focuses on deriving the sampling distribution of statistics from a compound distribution formed by an Erlang distribution and a geometric distribution. The resulting distribution, g(t), is identified as an exponential distribution with a rate parameter of λp. Key statistical parameters such as expectation, variance, coefficient of variation, and skewness are calculated, revealing that the coefficient of variation is 1 and skewness is 2. Participants express uncertainty about deriving formulas for the sampling distribution of these statistics with a sample size n. The conversation highlights a gap in available resources regarding sampling distributions in the context of exponential distributions.
Ad VanderVen
Messages
169
Reaction score
13
TL;DR
Given a geometric Erlang distribution, how can I derive the sampling distribution of the coefficient of variation and the skewness for a sample of size $n$.
Assume that ##T## has an Erlang distribution:
$$\displaystyle f \left(t \, | \, k \right)=\frac{\lambda ^{k }~t ^{k -1}~e^{-\lambda ~t }}{\left(k -1\right)!}$$
and ##K## has a geometric distribution
$$\displaystyle P \left( K=k \right) \, = \, \left( 1-p \right) ^{k-1}p$$
Then the compound distribution has the following form.
$$\displaystyle g \left(t \right)= \sum _{k=1}^{\infty} f \left(t \, | \, k \right)~P \left(K =k \right)=\frac{\lambda ~p }{e^{\lambda ~t ~p }}$$
with expectation:
$$\displaystyle \mu_{{1}}\, = \,{\frac {1}{\lambda\,p}}$$
variance:
$$\displaystyle \mu_{{2}}\, = \,{\frac {1}{{\lambda}^{2}{p}^{2}}}$$
and third central moment:
$$\displaystyle \mu_{{3}}\, = \, {\frac {2}{{\lambda}^{3}{p}^{3}}}$$
The coefficient of variation ##c_v## is given by:
$$\displaystyle {\it c_v}\, = \,{\frac { \sqrt{\mu_{{2}}}}{\mu_{{1}}}}=1$$
and the skewness ##\tilde{\mu}_3## by:
$$\displaystyle {\it \tilde{\mu}_3}\, = \,{\frac {\mu_{{3}}}{{\mu_{{2}}}^{3/2}}}=2$$
Is it possible to derive a formula for the sampling distribution of the coefficient of variation and the skewness with a sample size ##n##?
 
Last edited:
Physics news on Phys.org
mathman said:

I am now aware that ##g(t)## is in fact an exponential distribution with rate parameter ##\lambda \, p##. But the Wikipedia site on the exponential distribution makes no mention of sampling distributions.
 
Section on statistical parameters? I am not sure what you want.
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K