MHB How to Find \(a^2\) from a Matrix Inverse Equation?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Inverse Matrix
Yankel
Messages
390
Reaction score
0
Hello,

I have another question regarding inverse matrices. I need to find

\[a^{2}\]

given:

\[\exists x: \begin{pmatrix} 1 &a \\ 2a &1 \end{pmatrix}^{2}\cdot \begin{pmatrix} 1\\ x \end{pmatrix}=\begin{pmatrix} 0\\ 0 \end{pmatrix}\]

Any hints or guidance will be appreciated !

Thanks !
 
Physics news on Phys.org
Some random thoughts that occurs to me:

We can see that the matrix:

$\begin{bmatrix}1&2a\\a&1 \end{bmatrix}^2$

is singular. Let's call this matrix $M^2$.

Convince yourself that if $M$ is invertible, so is $M^2$. Since $M^2$ is singular, then, so must $M$ be. Under what conditions will $M$ be singular?
 
not sure I follow you

what makes you think it is singular ? I ran an example setting a=2 on Maple and there was an inverse...

if they tell me there exist x such that...is it right to say that there exist x that solves this linear equation system, meaning that the matrix is invertible ? saying that, is it correct to say that rank of this matrix must equal 2, and that what I need to do here is to find the values of a that gives me that ? If I am correct, I know WHAT to do, but not HOW to do, because of the 17th power up there.
 
There are lots of "equivalent" definitions of a singular matrix:

1) A matrix that is not invertible.
2) A matrix $A$ for which there exists some other matrix $B \neq 0$ with $AB = 0$.
3) A matrix $A$ for which there exists some non-zero vector $v$ such that $Av = 0$.
4) A matrix with zero determinant.

It should be clear that definition #3 is easiest to apply, here: since the vector $(1,x)^T$ is non-zero, no matter "what" $x$ may be.

Yes, for SOME values of $a$, the matrix $M$ WILL be invertible. You are not interested in those values, you are interested in the values for which $M$ will NOT be invertible (Hint: look at definition #4).
 
basically I am not suppose to use determinants for this one...

I understand what you mean now, for why seeking for values of a for which the matrix is NOT invertible. How should I find them if I have a 17th power - this I am yet to realize
 
Not using determinants seems an onerous restriction, as it truly is the most elegant way in this case.

I do not see why you keep mentioning the "17th power" it truly does not seem relevant.

I forgot the mention a 5th equivalent definition of a singular matrix:

One whose columns form a linearly dependent set.

If we apply THIS definition, we must have:

$(2a,1) = (k,ka)$ for some field element (real number? rational? complex? you do not say...) $k$.

Since by direct substitution we see $a = 0$ does not work, we may assume $a \neq 0$.

This leads to the two equations:

$2a = k$
$1 = ka$

That is:

$k = \dfrac{1}{a} = 2a$.

This last equation can be solved for $a^2$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top