MHB How to find a length of line in quadrilateral?

  • Thread starter Thread starter asmmanikanda
  • Start date Start date
  • Tags Tags
    Length Line
AI Thread Summary
To find the length of line XY in a quadrilateral where sides AB and DC are not parallel, it is necessary to apply the cosine rule due to the lack of unique angles. The discussion highlights that if AB and DC were parallel, specific angle relationships could simplify the calculation. The provided dimensions include AB=55, BC=65, DC=76, and DA=48, among others. By using the cosine rule, the angles can be calculated, leading to an approximate length of XY being around 66.4. The complexity of the quadrilateral's shape means that the length of XY cannot be determined uniquely without additional constraints or information.
asmmanikanda
Messages
5
Reaction score
0
IMG_20200808_221717.jpg

AB and DC not parallel line., AB=55,BC=65,DC=76,DA=48
Ax=28,xD=20,By=37,yC=28

How to find length of xy?
 
Mathematics news on Phys.org
Hi asmmanikanda, welcome to MHB!

If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.\begin{tikzpicture}[scale=1.5,font=\Large]
\path[orange] (137:4.8) coordinate[label=A] (A) -- ++(5.5,0) coordinate[label=B] (B) -- ++(-30:6.5) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (137:2.0) coordinate[label=left:x] (X) (B) ++(-30:3.7) coordinate[label=right:y] (Y);
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {55} (B) -- node[above right] {65} (C) -- node[below] {76} (D) -- node[below left] {48} (A);
\path[purple] (D) -- node[above right] {20} (X) -- node[above right] {28} (A) (C) -- node[below left] {28} (Y) -- node[below left] {37} (B);
\end{tikzpicture}

Can you confirm that this is the intended diagram?
Is there perhaps a typo?
 
Last edited:
Klaas van Aarsen said:
If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.

Not a trapezium ... OP stated that AB is not parallel to DC.
 
skeeter said:
Not a trapezium ... OP stated that AB is not parallel to DC.

Ah okay... then we have too much freedom I think... and line x-y won't have a unique length.
 
I made the same mistake (thinking trapezoid) ... sometimes one has to read the "fine print"
 
Klaas van Aarsen said:
Ah okay... then we have too much freedom I think... and line x-y won't have a unique length.
OK sir. If trapezium mean how to find the length of xy?
 
Klaas van Aarsen said:
Hi asmmanikanda, welcome to MHB!

If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.

\begin{tikzpicture}[scale=1.5,font=\Large]
\path[orange] (137:4.8) coordinate[label=A] (A) -- ++(5.5,0) coordinate[label=B] (B) -- ++(-30:6.5) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (137:2.0) coordinate[label=left:x] (X) (B) ++(-30:3.7) coordinate[label=right:y] (Y);
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {55} (B) -- node[above right] {65} (C) -- node[below] {76} (D) -- node[below left] {48} (A);
\path[purple] (D) -- node[above right] {20} (X) -- node[above right] {28} (A) (C) -- node[below left] {28} (Y) -- node[below left] {37} (B);
\end{tikzpicture}

Can you confirm that this is the intended diagram?
Is there perhaps a typo?

Yes sir. I posted rough diagram only sir. Your diagram may be your correct. My questions 1. How to find a length of xy if not trapezium?
2.how to find a length of xy if trapezium?
 
Last edited by a moderator:
Can you post the original question here? If it has a diagram in the question, you can take a picture of it and upload it here, so we can get a better idea of what is being asked. :)
 
anemone said:
Can you post the original question here? If it has a diagram in the question, you can take a picture of it and upload it here, so we can get a better idea of what is being asked. :)
Image is in not to scale. 1. How to find length of xy if AB And CD is parallel ?
2.how to find length of xy if AB and CD is not parallel?
 

Attachments

  • IMG_20200808_221717.jpg
    IMG_20200808_221717.jpg
    29.4 KB · Views: 111
  • #10
We can divide the quadrilateral into triangles like this.

\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}

\def\angleDelta{80}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}

\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);

\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});

\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);

\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};

\end{tikzpicture}

Now we can repeatedly apply the cosine rule to find the various sides and angles.
The general cosine rule is:
$$c^2=a^2+b^2-2ab\cos\alpha \tag 1$$
And we can invert it to find the angle:
$$\alpha=\cos^{-1}\left(\frac{a^2+b^2-c^2}{2ab} \right) \tag 2$$

The length XY depends on the angle $\delta$, and its formula form is rather long, so I'm choosing not to write it out at this time.

If we have the constraint that we have a trapezium, then we have $\beta + \gamma = 180^\circ$ due to so called Z-angles.

\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}

\def\angleDelta{137}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}

\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);

\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});

\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);

\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};

\end{tikzpicture}
Working through the cosine rules gives us then that $\delta \approx 137^\circ$, $\gamma \approx 30^\circ$, and $XY\approx 66.4$.
 
Last edited:
  • #11
Klaas van Aarsen said:
We can divide the quadrilateral into triangles like this.

\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}

\def\angleDelta{80}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}

\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);

\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});

\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);

\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};

\end{tikzpicture}

Now we can repeatedly apply the cosine rule to find the various sides and angles.
The general cosine rule is:
$$c^2=a^2+b^2-2ab\cos\alpha \tag 1$$
And we can invert it to find the angle:
$$\alpha=\cos^{-1}\left(\frac{a^2+b^2-c^2}{2ab} \right) \tag 2$$

The length XY depends on the angle $\delta$, and its formula form is rather long, so I'm choosing not to write it out at this time.

If we have the constraint that we have a trapezium, then we have $\beta + \gamma = 180^\circ$ due to so called Z-angles.

\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}

\def\angleDelta{137}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}

\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);

\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});

\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);

\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};

\end{tikzpicture}
Working through the cosine rules gives us then that $\delta \approx 137^\circ$, $\gamma \approx 30^\circ$, and $XY\approx 66.4$.
Can you explain step by step till answer pls
 
Back
Top