asmmanikanda
- 5
- 0
AB and DC not parallel line., AB=55,BC=65,DC=76,DA=48
Ax=28,xD=20,By=37,yC=28
How to find length of xy?
The discussion revolves around finding the length of a line segment (xy) within a quadrilateral defined by specific side lengths and angles. Participants explore different scenarios based on whether the quadrilateral is a trapezium or not, and the implications of these configurations on the calculation of the segment's length.
Participants do not reach a consensus on the classification of the quadrilateral or the implications for calculating the length of xy. Multiple competing views remain regarding the conditions under which the length can be determined.
There are limitations regarding the assumptions made about the shape of the quadrilateral, the dependence on whether it is a trapezium, and the potential for multiple configurations leading to different lengths for segment xy.
Klaas van Aarsen said:If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.
skeeter said:Not a trapezium ... OP stated that AB is not parallel to DC.
OK sir. If trapezium mean how to find the length of xy?Klaas van Aarsen said:Ah okay... then we have too much freedom I think... and line x-y won't have a unique length.
Klaas van Aarsen said:Hi asmmanikanda, welcome to MHB!
If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.
\begin{tikzpicture}[scale=1.5,font=\Large]
\path[orange] (137:4.8) coordinate[label=A] (A) -- ++(5.5,0) coordinate[label=B] (B) -- ++(-30:6.5) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (137:2.0) coordinate[label=left:x] (X) (B) ++(-30:3.7) coordinate[label=right:y] (Y);
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {55} (B) -- node[above right] {65} (C) -- node[below] {76} (D) -- node[below left] {48} (A);
\path[purple] (D) -- node[above right] {20} (X) -- node[above right] {28} (A) (C) -- node[below left] {28} (Y) -- node[below left] {37} (B);
\end{tikzpicture}
Can you confirm that this is the intended diagram?
Is there perhaps a typo?
Image is in not to scale. 1. How to find length of xy if AB And CD is parallel ?anemone said:Can you post the original question here? If it has a diagram in the question, you can take a picture of it and upload it here, so we can get a better idea of what is being asked. :)
Can you explain step by step till answer plsKlaas van Aarsen said:We can divide the quadrilateral into triangles like this.
\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}
\def\angleDelta{80}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}
\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);
\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);
\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};
\end{tikzpicture}
Now we can repeatedly apply the cosine rule to find the various sides and angles.
The general cosine rule is:
$$c^2=a^2+b^2-2ab\cos\alpha \tag 1$$
And we can invert it to find the angle:
$$\alpha=\cos^{-1}\left(\frac{a^2+b^2-c^2}{2ab} \right) \tag 2$$
The length XY depends on the angle $\delta$, and its formula form is rather long, so I'm choosing not to write it out at this time.
If we have the constraint that we have a trapezium, then we have $\beta + \gamma = 180^\circ$ due to so called Z-angles.
\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}
\def\angleDelta{137}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}
\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);
\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);
\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};
\end{tikzpicture}
Working through the cosine rules gives us then that $\delta \approx 137^\circ$, $\gamma \approx 30^\circ$, and $XY\approx 66.4$.