How to find an equation for two parallel lines

  • Thread starter Thread starter Dukefool
  • Start date Start date
  • Tags Tags
    Lines Parallel
Click For Summary
The discussion centers on finding the equation of a plane containing two lines given in symmetric form, L1 and L2. Initially, it is assumed that both lines are parallel due to having the same slope, but further calculations reveal that the points provided do not satisfy the line equations, indicating that the lines are not parallel. The normal vector for the plane is derived from the cross product of the vector connecting points on the two lines and their slope, leading to confusion regarding the correct coefficients in the plane equation. Ultimately, the calculations show discrepancies between the derived normal vector values and those provided in the solution sheet. The conclusion emphasizes the importance of verifying points on the lines to ensure accurate results.
Dukefool
Messages
4
Reaction score
0

Homework Statement


The two lines are in symmetric equations. L1 is (x-1)/2=(y+1)/3=-z. L2 is (x+1)/2=(y-1)/3=3-z. Find the equation of the plane containing the lines.
The point on L1 is (1,-1,0) with slope of (2,3,-1)
The point on L2 is (-1,1,3) with slope of (2,3,-1)

Homework Equations


a(x-x0)+b(y-y0)+c(z-z0)=0
Normal vector =V(P1P2)XSlope

The Attempt at a Solution


With same slope, you know the lines are parallel.
So the vector from P1 to P2 is (-2,2,3)
Cross product of vector P1 to P2 and the slope is (-11,-8,4)
My thought was that the normal vector has the value of (a,b,c) in the equation for plane. I plugged in the values from the normal vector along with P1 to get:
-11(x-1)-8(y+1)+4z=0.
According to the solutions sheet, the answer is 11(x-1)-4(y+1)+10z=0.
I got the x0,y0,z0 correct but why are the a, b, and c values wrong?
 
Last edited:
Physics news on Phys.org
Dukefool said:

Homework Statement


The two lines are in symmetric equations. L1 is x-1/2=y+1/3=-z. L2 is x+1/2=y-1/3=3-z. Find the equation of the plane containing the lines.
The point on L1 is (1,-1,0) with slope of (2,3,0)
To start with, neither of these is true. 1- 1/2= 1/2 while -1+1/3= -2/3 and neither of those is equal to -0. (1, -1, 0) is NOT a point on this line.

If x= 1, then 1-1/2= 1/2= y+ 1/3 so y= 1/2- 1/3= 1/6 and -z= 1/2 so z= -1/2. The point (1, 1/6, -1/2) is on L1.

If x= 2, then 2- 1/2= 3/2= y+ 1/3 so y= 3/2- 1/3= 7/6 and -z= 3/2 so z= -3/2. The point (2, 7/6, -3/2) is also on the line and the vector from the first point to the second, and so in the direction of the line is <2-1, 7/6- 1/6, -1/2-(-3/2)>= <1, 1, 1>

The point on L2 is (-1,1,3) with slope of (2,3,0)
Again, not true. -1+1/2= -1/2 which is not equal to 1-1/3= -2/3 and neither is equal to 3-3= 0 so (-1, 1, 3) is NOT a point on this line. If x= -1, then x+1/2= -1/2 so y-1/3= -1/2 gives y= 1/3- 1/2=1/6 and 3- z= -1/2 so z=3+ 1/2=7/2. A point on L2 is (-1, 1/6, 7/2). if x= 1, x+1/2= 3/2 so y- 1/3= 3/2 and y= 1/3+ 3/2= 11/6. 3- z= 3/2 gives z= 3- 3/2= 3/2. Another point on L2 is (1, 11/6, 3/2). the vector from the first to the seocnd, and so in the direction of the line is <-1- 1, 11/6- 1/6, 3/2- 7/2>= <-2, 5/3, -2>. Since this is NOT a multiple of the previous vector, <1, 1, 1>, the two lines are NOT parallel.

Homework Equations


a(x-x0)+b(y-y0)+c(z-z0)=0
Normal vector =V(P1P2)XSlope
I don't know what this means. The normal vector is the cross product of the previous two vectors and you can use any point on either line, in particular, any of the four points already calculated.

The Attempt at a Solution


With same slope, you know the lines are parallel.
So the vector from P1 to P2 is (-2,2,3)
Cross product of vector P1 to P2 and the slope is (-11,-8,4)
My thought was that the normal vector has the value of (a,b,c) in the equation for plane. I plugged in the values from the normal vector along with P1 to get:
-11(x-1)-8(y+1)+4z=0.
According to the solutions sheet, the answer is 11(x-1)-4(y+1)+10z=0.
I got the x0,y0,z0 correct but why are the a, b, and c values wrong?
 
My apologizes as I have forgotten to add in the parenthesis to clarify the equations of the lines.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K