MHB How to find angles of a triangle

  • Thread starter Thread starter Andrei1
  • Start date Start date
  • Tags Tags
    Angles Triangle
Click For Summary
To find angles B and C in triangle ABC given angle A as $$\alpha$$ and side $$a=\frac{b+c}{2}$$, the relationship $$\alpha=\pi-B-C$$ is crucial. The cosine theorem can express side a in terms of b, c, and $$\alpha$$, leading to a system of equations with two unknowns. The sine theorem helps derive the ratio $$\frac{b}{c}$$, which can be substituted back into the equations. The angle bisector of angle A also plays a significant role in determining the segments of side a. The discussion emphasizes the complexity of solving these equations but provides a pathway to derive angles B and C.
Andrei1
Messages
36
Reaction score
0
We know that in triangle ABC angle A equals $$\alpha$$ and side $$a=\frac{b+c}{2}.$$ How to find angles B and C knowing that $$B\geqslant C$$? For which values of $$\alpha$$ the problem has solutions?

ps. a, b, c are only notations.

answer. $$\frac{\pi-\alpha}{2}\pm\arccos(2\sin\frac{\alpha}{2})$$
 
Mathematics news on Phys.org
Re: how to find angles of a triangle

It seems you have given $\alpha$ in terms of $\alpha$.
 
Re: how to find angles of a triangle

Here is what I do. I express a through b, c and $$\alpha$$ by cosine theorem. So I have an equation with only b and c as unknown. I obtain $$\frac{b}{c}$$ by sine theorem and I substitute this ratio in the first equation. I also know that $$\alpha=\pi-B-C.$$ So I have two equations with two unknowns. But it is hard to solve.

I also noticed that the bisector of angle A divide side a in two segments: b/2 and c/2.
 
Re: how to find angles of a triangle

Andrei said:
Here is what I do. I express a through b, c and $$\alpha$$ by cosine theorem. So I have an equation with only b and c as unknown. I obtain $$\frac{b}{c}$$ by sine theorem and I substitute this ratio in the first equation. I also know that $$\alpha=\pi-B-C.$$ So I have two equations with two unknowns. But it is hard to solve.

I also noticed that the bisector of angle A divide side a in two segments: b/2 and c/2.
I think you are nearly there. Look at this picture, in which $AD$ is the angle bisector at $A$, and $BN$ is perpendicular to $AD$:

ABCDN.gif


The angle at $B$ is obviously $\angle ABN + \angle NBD$. Equally obviously, $\angle ABN = \frac{\pi}2 - \frac\alpha2$, so we just need to show that $\cos(\angle NBD) = 2\sin\bigl(\frac\alpha2\bigr)$. But $\cos(\angle NBD) = \frac{BN}{BD}$, and you have already shown that $BD = c/2$, so you just need to observe that $BN = c\sin\bigl(\frac\alpha2\bigr)$, which is evident from the triangle $ABN$.

You can get the result for the angle at $C$ in a similar way by dropping a perpendicular from $C$ to the extension of $AD$.​
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...